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Abstract

G2-manifolds with a cohomogeneity-one action of a compact Lie groupG are studied. ForG
simple, all solutions with holonomyG2 and weak holonomyG2 are classified. The holonomy
G2 solutions are necessarily Ricci-flat and there is a one-parameter family with SU(3)-symmetry.
The weak holonomyG2 solutions are Einstein of positive scalar curvature and are uniquely de-
termined by the simple symmetry group. During the proof the equations forG2-symplectic and
G2-cosymplectic structures are studied and the topological types of the manifolds admitting such
structures are determined. New examples of compactG2-cosymplectic manifolds and complete
G2-symplectic structures are found.
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1. Introduction

A G2-structure on a seven-dimensional manifoldM is an identification of the tan-
gent space with the imaginary octonians. Equivalently, the geometry is determined by
a three-formφ which at each point is of ‘generic type’, in that it lies in a particular
open orbit for the action of GL(7, R) (such forms are ‘stable’ in Hitchin’s terminol-
ogy [14]). The three-formφ determines a Riemannian metricg and hence a Hodge-star
operator∗.

If φ and the four-form∗φ are both closed, theng is Ricci-flat and has holonomy contained
in G2. This is one of the two exceptional holonomy groups in the Berger classification (see
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[2,6]). The first non-trivial complete examples were constructed by Bryant and Salamon[7]
and compact examples have since been found by Joyce (first in[15,16]and more recently
in [17]) and by Kovalev[19].

If dφ = λ∗φ, for some non-zero constantλ, theng is an Einstein metric of positive scalar
curvature andM is said to have weak holonomyG2. This terminology was first introduced
by Gray[13]. Many homogeneous examples are known. For example, each Aloff–Walach
space SU(3)/U(1)k,�, where U(1)k,� = {diag(eikθ , ei�θ , e−i(k+�)θ )} andk, � are integers,
carries two such metrics (see[8]). As k and� vary, this family includes infinitely many
different homeomorphisms types. A classification of the compact homogeneous manifolds
with weak holonomyG2 is given in[11].

In this paper, we studyG2-structures with a cohomogeneity-one action of a compact Lie
groupG. This means thatG acts onM preserving the three-formφ and that the generic orbit
on M has dimension 7− 1 = 6. We will first determine the connected groupsG that can
act. Thereafter, we study the equations for holonomy and weak holonomyG2-structures in
the case thatG is simple and determine all solutions. The simple groups in question areG2,
Sp(2) and SU(3). In each case, we find that the weak holonomyG2 solutions are unique;
they are only complete in the case with symmetryG2, and here one gets the round metric
on the seven-sphere (and its quotientRP (7)). The limited number of solutions is in strong
contrast to the homogeneous case. For holonomyG2, the solutions for the first two sym-
metry groups are isolated, whereas for SU(3) there is a one-parameter family of solutions.
This family contains a unique complete metric, which turns out to have U(3)-symmetry.
TheG2-symmetric solution is flat, whereas those with symmetry Sp(2) and U(3) are the
metrics found by Bryant and Salamon[7]. In private communications, Andrew Dancer and
McKenzie Wang, and Gary Gibbons and Chris Pope tell us that they have also recently found
the one-dimensional family of triaxial SU(3)-symmetric metrics. Note that by considering
non-simple symmetry groups new complete metrics with holonomyG2 have been found
by Brandhuber et al.[3].

Both weak holonomy and holonomy structures satisfy d∗φ = 0 and so are special exam-
ples of cosymplecticG2-structures. Any hypersurface in an eight-manifold with holonomy
Spin(7) carries a cosymplecticG2-structure and homogeneous cosymplecticG2-structures
with symmetry Sp(2) are behind the new Spin(7)-holonomy examples constructed in[10].
Our approach gives examples of compact cohomogeneity-one manifolds with cosymplectic
G2-structures. By Hitchin[14] these are hypersurfaces in manifolds of holonomy Spin(7).
It is therefore an interesting question for future work, which of these Spin(7) metrics are
complete.

The other part of the holonomyG2-equations is dφ = 0. Solutions to this equation
define what are known as symplecticG2-structures. We show that for cohomogeneity-one
manifolds with simple symmetry group, a symplecticG2-structure exist only if the manifold
also admits a holonomyG2 metric.

2. G2-structures

Let W be R
7 with its usual inner productg0. Take{v0, . . . , v6} to be an orthonormal

basis forW and writev01 = v0v1 = v0 ∧ v1, etc., in the exterior algebraΛ∗W ∗. For each
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θ ∈ R, we define a three-formφ(θ) onW by

φ(θ) = ω0 ∧ v0 + cosθ α0 + sinθ β0, (2.1)

whereα0 = v246−v235−v145−v136,β0 = v135−v146−v236−v245andω0 = v12+v34+v56.
The Lie groupG2 may be defined to be the stabiliser ofφ(0) under the action of GL(7, R).

From this, Bryant shows thatG2 is a compact, connected, simply-connected Lie group of
dimension 14[5]. The subgroup ofG2 fixing v0 is isomorphic to SU(3). Indeed, in the basis
u0 = v0, uk = v2k−1 + iv2k, k = 1, 2, 3, for W ∗ ⊗ C, we have

φ(θ) = 1
2i((u1ū1 + u2ū2 + u3ū3)u0 + e−iθ u1u2u3 − eiθ ū1ū2ū3).

Thus,φ(θ) = e−iθ/3φ(0) showing that stabilisers ofφ(θ) are all conjugate in SO(7) and
that 6g0(v, w) vol0 = (v�φ(θ)) ∧ (w�φ(θ)) ∧ φ(θ) is independent ofθ .

Conversely, the Lie groupG2 acts transitively on the unit sphere inR
7. A choice of unit

vectorv0, determines a stabiliser isomorphic to SU(3) and the action of SU(3) on 〈v0〉⊥
fixes a Kähler formω0 and a complex volume which may be written as eiθ u1u2u3. In this
way, we see that there is an orthonormal basis so that theG2 three-form isφ(θ) as in(2.1).

A G2-structure on a seven-dimensional manifoldM is specified by fixing a three-form
φ such that for eachp there is a basis ofW = TpM so thatφp = φ(θ) for someθ . We
say that a compact Lie groupG acts on(M7, φ) with cohomogeneity-one ifG preserves
the three-formφ and the largestG-orbits are of dimension 6. In this case,B = M/G

is a one-dimensional manifold, quite possibly with boundary. The orbits lying over the
interior of B are all isomorphic toG/K, whereK = Kp is the stabiliser of ap ∈ M with
G · p ∈ Int B. We call these orbitsprincipal and any remaining orbits are calledspecial.
Let G/H be a special orbit. Using the action ofG, we may assume thatH is a subgroup
of K. A necessary and sufficient condition forM to be a smooth manifold is that for each
special orbitG/H , the quotientH/K is a sphere[20].

3. Principal orbit structure

The requirement thatG acts onM with cohomogeneity-one preservingφ implies that
the representation of the isotropy groupK = Kp on the tangent space of a principal
orbit is as a subgroup of SU(3) on its standard six-dimensional representation [[Λ1,0]] ∼=
R

6. Considering the Lie algebras only we find thatk must be isomorphic to eithersu(3),
u(2), su(2), 2u(1), u(1) or {0}. The possible isotropy representations are then the real
representations underlying the following three-dimensional complex representations: the
standard representation ofsu(3), the representationL2 ⊕ L̄V of u(2), the representations
S2V andC⊕ V of su(2), the representationL1⊕ L2⊕ L̄1L̄2 of 2u(1), the representation
L⊕ L̄⊕C of u(1) and finally the trivial representation 3C of {0}. For each of the non-trivial
representationsU of a possible isotropy algebrak the direct sumg = k ⊕ U happens to
determine a unique compact real Lie algebra. These are, respectively,g2, sp(2), 3su(2),
su(3)⊕u(1), su(3) and 2su(2)⊕u(1). The trivial representation may be taken to represent
either 2su(2), su(2)⊕ 3u(1) or 6u(1).

If, on the other hand,G/K is any effective six-dimensional homogeneous space with
K acting on the isotropy representation as a subgroup of SU(3), then we may pick an
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invariant Kähler formω and an invariant complex volume formα on G/K and obtain a
non-degenerate three-form onM = R×G/K by definingφ = dt ∧ ω + Re(α).

Theorem 3.1. Let (M7, φ) be a G2-manifold of cohomogeneity-one under a compact,
connected Lie group. Then, as almost effective homogeneous spaces, the principal orbits
are one of the following:

S6 = G2

SU(3)
, CP (3) = Sp(2)

SU(2)U(1)
, F1,2 = SU(3)

T 2
,

S3 × S3 = SU(2)3

SU(2)
= SU(2)2T 1

T 1
= SU(2)2,

S5 × S1 = SU(3)T 1

SU(2)
, S3 × (S1)3 = SU(2)T 3, (S1)6 = T 6,

up to finite quotients. Conversely, any cohomogeneity-one manifold with one of these as
principal orbit carries aG2-structure.

In this paper, we will consider the case whenG is simple. The principal orbits are the
first three cases listed above. The first of these is distinguished from the other two in that
K acts irreducibly onU .

4. Irreducible isotropy

This is the case when the principal orbit isG2/SU(3). The isotropy representation is the
real module underlying the standard representationΛ1,0 ∼= C

3 of SU(3). Up to scale this
admits precisely one invariant two-formω and one invariant symmetric two-tensorg0. The
space of invariant three-forms is two-dimensional, spanned byα andβ. We fix the scales
as follows. Setg0 to be the canonical metric onS6 = G2/SU(3) with sectional curvature
one. Then letω, α andβ be such thatω3 = 6 vol0, dω = 3α, ∗0α = β and dβ = −2ω2.

Let γ be a geodesic throughp orthogonal to the principal orbitG2/SU(3) and parame-
teriseγ by arc-lengtht ∈ I ⊂ R. Then the union of principal orbits isI ×G2/SU(3) ⊂ M

and there are smooth functionsf, θ : I → R such that

g = dt2 + f 2g0, vol = f 6 vol0 ∧ dt, (4.1)

φ = f 2ω ∧ dt + f 3( cosθ α + sinθ β). (4.2)

Note thatf (t) is non-zero for eacht ∈ I . Our choice of scales now gives

∗φ = 1
2f 4ω2 + f 3( cosθ β − sinθ α) ∧ dt, d∗φ = 2f 3(f ′ − cosθ)ω2 ∧ dt,

dφ = (3f 2 − (f 3 cosθ)′)α ∧ dt − (f 3 sinθ)′β ∧ dt − 2f 3 sinθ ω2.

We first consider the cosymplecticG2-equations d∗φ = 0 which are equivalent to
f ′ = cosθ . Locally, these are described by the one arbitrary functionθ . Alternatively, one
may regard them as determined by solutions to the differential inequality|f ′| ≤ 1.
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Geometrically the solutions may be understood as follows. ConsiderR
8 = W × R with

its standard Spin(7) four-formΩ = φ(0)∧ v8+∗7φ(0). As Spin(7) = stabGL(8,R) Ω acts
transitively on the unit sphere inR8 with stabiliserG2, we see that for any unit vectorN ,
the three-formN�Ω defines aG2-structure on〈N〉⊥ and thatΩ = φ ∧N' + ∗φ. As Ω is
closed we, therefore, have Gray’s observation that any oriented hypersurfaceH ⊂ R

8 with
unit normalN carries a cosymplecticG2-structure.

The hypersurfaceH = {(v, s) ∈ W × R : ‖v‖ = r(s)} is of cohomogeneity-one
under the action ofG2. Its metric is(1+ (dr/ds)2) ds2 + r2g0. Reparameterising so that
dt =

√
(1+ (dr/ds)2) ds, we obtain a metric in the form(4.1) with f (t) = r(s(t)) and

hencef ′(t) = (dr/ds)/
√

1+ (dr/ds)2. However, this has|f ′(t)| < 1, so we may write
f ′ = cosθ and we see that locally each cosymplecticG2-solution is given this way away
from | cosθ | = 1.

The symplecticG2-equations dφ = 0 imply first that sinθ ≡ 0. We then get| cosθ | = 1
andf ′ = cosθ , so such metrics are also cosymplectic and have holonomyG2. However,
the solutions are simplyf (t) = ±t and we get the standard flat metric onR

7 with its
standardG2-structure.

The equations dφ = λ∗φ for weak holonomyG2 give

λf = −4 sinθ and 4θ ′ = −λ.

Thus,f (t) = (4/λ) sin(λt/4). The hypersurface discussion above shows that this is locally
the round metric onS7.

5. Reducible isotropy: the equations

Let us begin with the case of SU(3)-symmetry. The principal isotropy groupK = T 2 =
S1

1 ×S1
2 acts on the standard representationΛ1,0 ∼= C

3 asL1+L2+ L̄1L̄2, whereLi
∼= C,

are the standard representations ofS1
i
∼= U(1). Using the isomorphismsu(3)⊗ C ∼= Λ

1,1
0 ,

we find that the isotropy representation is [[L1L̄2]] + [[L1L2
2]] + [[L2

1L2]]. Each irreducible
submodule carries an invariant metricgi and symplectic formωi , i = 1, 2, 3, but the space
of invariant three-forms has dimension 2. IdentifyingT 2 with the diagonal matrices in
SU(3), we fix the basis

E1 = 1

2


 0 0 0

0 0 −1
0 1 0


 , E2 = 1

2i


 0 0 0

0 0 1
0 1 0


 , E3 = 1

2


 0 0 1

0 0 0
−1 0 0


 ,

E4 = 1

2i


 0 0 1

0 0 0
1 0 0


 , E5 = 1

2


 0 −1 0

1 0 0
0 0 0


 , E6 = 1

2i


 0 1 0

1 0 0
0 0 0




of the tangent space at the origin and let{e1, . . . , e6} denote the dual basis. We may now
write

g1 = e2
1 + e2

2, g2 = e2
3 + e2

4, g3 = e2
5 + e2

6,

ω1 = e12, ω2 = e34, ω3 = e56,
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and find that

α = e246− e235− e145− e136, β = e135− e146− e236− e245

is a basis for the invariant three-forms. Put vol0 = e123456. As left-invariant one-forms on
SU(3) we have dei(Ej , Ek) = ei([Ej , Ek]). One may thus show that on SU(3)/T 2 one has

dω1 = dω2 = dω3 = 1
2α, dα = 0, dβ = −2(ω1ω2 + ω2ω3 + ω3ω1) and

d(ωiωj ) = 0. (5.1)

Any SU(3)-invariantG2-structure onI × SU(3)/T 2 has

g = dt2 + f 2
1 g1 + f 2

2 g2 + f 2
3 g3, vol = f 2

1 f 2
2 f 2

3 vol0 ∧ dt, (5.2)

where t ∈ I ⊂ R is the arc-length parameter of an orthogonal geodesic andfi are
non-vanishing functions. Using the equation(X�φ) ∧ (Y�φ) ∧ φ = 6g(X, Y ) vol and
normalisationφ ∧ ∗φ = 7 vol, we find that the corresponding invariant three-form is

φ = (f 2
1 ω1 + f 2

2 ω2 + f 2
3 ω3) ∧ dt + f1f2f3( cosθ α + sinθ β) (5.3)

for some functionθ(t). TheG2-structure now has

∗φ = f 2
2 f 2

3 ω2ω3 + f 2
3 f 2

1 ω3ω1 + f 2
1 f 2

2 ω1ω2 + f1f2f3( cosθ β − sinθ α) ∧ dt,

and hence

d ∗ φ = ((f 2
2 f 2

3 )′ − 2f1f2f3 cosθ)ω2ω3 ∧ dt

+((f 2
3 f 2

1 )′ − 2f1f2f3 cosθ)ω3ω1 ∧ dt

+((f 2
1 f 2

2 )′ − 2f1f2f3 cosθ)ω1ω2 ∧ dt,

dφ = (1
2(f 2

1 + f 2
2 + f 2

3 )− (f1f2f3 cosθ)′)α ∧ dt

−(f1f2f3 sinθ)′β ∧ dt − 2f1f2f3 sinθ(ω1ω2 + ω2ω3 + ω3ω1).

We therefore have that the SU(3)-invariantG2-structure is cosymplectic if

(f 2
1 f 2

2 )′ = (f 2
3 f 2

1 )′ = (f 2
2 f 2

3 )′ = 2f1f2f3 cosθ. (5.4)

It is G2-symplectic if

(f1f2f3 cosθ)′ = 1
2(f 2

1 + f 2
2 + f 2

3 ) and f1f2f3 sinθ = 0. (5.5)

The equations for weak holonomyG2 are

(f1f2f3 cosθ)′ = 1
2(f 2

1 + f 2
2 + f 2

3 )+ λf1f2f3 sinθ, (5.6a)

(f1f2f3 sinθ)′ = −λf1f2f3 cosθ, (5.6b)

−2f1f2f3 sinθ = λf 2
1 f 2

2 = λf 2
2 f 2

3 = λf 2
3 f 2

1 . (5.6c)

Let us now consider the case of Sp(2)-symmetry. The principal isotropy groupK =
U(1)×Sp(1) acts on the standard representationE ∼= C

4 asE ∼= H +L+ L̄, whereH ∼=
C

2 andL ∼= C are the standard representations of Sp(1) = SU(2) and U(1), respectively.
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Usingsp(2)⊗C ∼= S2E we find that the isotropy representation is [[L2]] + [[HL̄]]. Both of
these modules carry an invariant metricgi and symplectic formωi . The space of invariant
three-forms on their sum is two-dimensional. We give the isotropy representation the basis

E1 = 1

2

(
0 0
0 j

)
, E2 = 1

2

(
0 0
0 −k

)
, E3 = 1

2
√

2

(
0 −1
1 0

)
,

E4 = 1

2
√

2

(
0 i
i 0

)
, E5 = 1

2
√

2

(
0 j
j 0

)
, E6 = 1

2
√

2

(
0 k
k 0

)
.

Then the dual elements{e1, . . . , e6}are such that{e1, e2} is a basis for [[L2]]∗ and{e3, . . . , e6}
is a basis for [[HL̄]]∗. We scalegi andωi so that

g1 = e2
1 + e2

2, g2 = e2
3 + e2

4 + e2
5 + e2

6, ω1 = e12, ω2 = e34+ e56.

Then

α = e246− e235− e145− e136, β = e135− e146− e236− e245

is a basis for the invariant three-forms. Put vol0 = e123456. Using the Lie algebra structure of
sp(2), one finds that the corresponding left-invariant forms on Sp(2)/(U(1)×Sp(1)) satisfy

dω1 = 1
2α, dω2 = α, dα = 0 and dβ = −2ω1ω2 − ω2

2.

Proceeding as in the SU(3)-case one finds that the Sp(2)-invariantG2-structures are given
by Eqs. (5.2) and (5.3)with f3 ≡ f2. Computing further, one finds that the equations for
these structures to be cosymplectic, symplectic or have weak holonomyG2 are those for
SU(3)-symmetry withf3 ≡ f2. We may therefore treat Sp(2)-symmetry as if it were a
special case of SU(3)-symmetry.

6. Solving the cosymplectic G2-equations

Consider the cosymplecticG2-equation (5.4). The differences of the differentials gives
thatf 2

i (f 2
j − f 2

k ) is constant for any permutation(ijk) of (123). We may therefore relable

thefi so thatf 2
3 ≥ f 2

2 ≥ f 2
1 ≥ 0 for all t and write

f 2
1 (f 2

3 − f 2
2 ) = µ2, f 2

2 (f 2
3 − f 2

1 ) = ν2, f 2
3 (f 2

2 − f 2
1 ) = ν2 − µ2 (6.1)

for some constantsν ≥ µ ≥ 0.
Let us first deal with two special cases. Ifν = 0, thenf 2

1 = f 2
2 = f 2

3 and we are left
with the equation

2f ′
1 = ± cosθ.

Up to a factor of 2 this is just the equation obtained forG2-symmetry inSection 4. Note
that we have|f ′

1| ≤ 1/2.

If ν > µ = 0, then 2f 2
2 = f 2

1 +
√

f 4
1 + 4ν2 andf ′

1 = cosθ

(
1+ f 2

1 /

√
f 4

1 + 4ν2

)−1

,

with θ an arbitrary function. Note that in this case|f ′
1| ≤ 1 and|f ′

2| = |f1 cosθ/2f2| < 1/2.
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The general case isν ≥ µ > 0. Heref 2
3 > f 2

2 ≥ f 2
1 > 0 andEq. (6.1)may be rearranged

to give

f 2
2 + ν2f−2

2 = f 2
3 + (ν2 − µ2)f−2

3 , (6.2a)

f 2
3 − (ν2 − µ2)f−2

3 = f 2
1 + µ2f−2

1 , (6.2b)

f 2
1 − µ2f−2

1 = f 2
2 − ν2f−2

2 . (6.2c)

RegardingEqs. (6.2a)–(6.2c)as quadratic inf 2
i , one sees that the corresponding discrimi-

nants are non-negative.
Let ∆(i; j) be the discriminant of(6.2a)with respect tof 2

j . Then we have

∆1 := ∆(2;3) = (f 2
1 + µ2f−2

1 )2 + 4(ν2 − µ2)

= (f 2
1 − µ2f−2

1 )2 + 4ν2 = ∆(3;2) = (f 2
3 + (ν2 − µ2)f−2

3 )(f 2
2 + ν2f−2

2 ),

∆2 := ∆(3;1) = (f 2
2 − ν2f−2

2 )2 + 4µ2 = (f 2
2 + ν2f−2

2 )2 − 4(ν2 − µ2)

= ∆(1;3) = (f 2
1 + µ2f−2

1 )(f 2
3 − (ν2 − µ2)f−2

3 ),

∆3 := ∆(1;2) = (f 2
3 + (ν2 − µ2)f−2

3 )2 − 4ν2

= (f 2
3 − (ν2 − µ2)f−2

3 )2 − 4µ2 = ∆(2;1) = (f 2
2 − ν2f−2

2 )(f 2
1 − µ2f−2

1 ).

The positivity of∆3 written as∆(1;2) implies thatf 4
3 − 2νf 2

3 + ν2 ≥ µ2 which in turns
gives eitherf 2

3 ≤ ν−µ or f 2
3 ≥ ν+µ. However,Eq. (6.2b)implies thatf 4

3 > ν2−µ2 =
(ν + µ)(ν − µ) > (ν − µ)2, so

f 2
3 ≥ ν + µ.

Also Eq. (6.2c)implies thatε = sgn(f 2
1 − µ) = sgn(f 2

2 − ν) is well defined. Using
these remarks, we can choose consistent branches of square roots in solving the quadratic
equations (6.2a)–(6.2c). For example, solving(6.2c)for f 2

2 and writing the discriminant as
a function off 2

1 , we get

(f 2
1 f 2

2 )′ = 1

2
(f 4

1 + f 2
1

√
∆1 − µ2)′ = 2(f 4

1 + f 2
1

√
∆1 − µ2 + 2ν2)

f 3
1 f ′

1√
∆1

= 4(f 2
1 f 2

2 + ν2)
f 3

1 f ′
1√

∆1
= 4f 2

2 f 2
3 f 3

1 f ′
1√

∆1
.

Doing similar computations for the other(f 2
i f 2

j )′ and putting the results into(5.4)gives

f ′
1 = 1

2f−1
2 f−1

3 cosθ
√

∆1 = 1
2ε23 cosθ

√
(1+ ν2f−4

2 )(1+ (ν2 − µ2)f−4
3 ), (6.3a)

f ′
2 = 1

2f−1
3 f−1

1 cosθ
√

∆2 = 1
2ε31 cosθ

√
(1− (ν2 − µ2)f−4

3 )(1+ µ2f−4
1 ), (6.3b)

f ′
3 = 1

2εf−1
1 f−1

2 cosθ
√

∆3 = 1
2ε∗12 cosθ

√
(1− µ2f−4

1 )(1− ν2f−4
2 ), (6.3c)
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whereεij = sgn(fifj ) andε∗ij = εij ε. We may rewrite the right-hand side ofEq. (6.3a)so
that it only containsθ andf1. Then for a given functionθ , we get an implicit differential
equation forf1:

f ′
1 = ε cosθ

√
Ξ(f1, µ, ν), (6.4)

where

Ξ(f1, µ, ν) = f 8
1 + 2(2ν2 − µ2)f 4

1 + µ4

2f 4
1

(
f 4

1 + (2ν2 − µ2)+
√

f 8
1 + 2(2ν2 − µ2)f 4

1 + µ4

) . (6.5)

Note that this functionΞ(f1, µ, ν) is positive and decreasing with

lim
|f1|→∞

Ξ(f1, µ, ν) = 1
4.

Alternatively, the structure may be determined by the functionf1.

Theorem 6.1. Consider a cosymplecticG2-structure preserved by an action ofSU(3) of
cohomogeneity-one. Then the metric is given by Eq.(5.2). Arrange the coefficients so that
f 2

3 ≥ f 2
2 ≥ f 2

1 . Then

|f ′
1| ≤

√
Ξ(f1, µ, ν) (6.6)

for some constantsν ≥ µ ≥ 0.
Conversely, any smooth functionf1 satisfying the differential inequality(6.6) gives a

cosymplecticG2-structure withf2 determined by Eq.(6.2c), f3 by Eq.(6.2b) and θ by
f3 cosθ = (f1f2)′.

Note that by rescaling and reparameterising we may rid ourselves of one of the parameters
and, for example, whenµ �= 0 set eitherµ, ν or µ+ ν equal to 1.

The case of Sp(2)-symmetry is now obtained by setting eitherµ = 0 orµ = ν.

Theorem 6.2. Consider a cosymplecticG2-structure preserved by an action ofSp(2) of
cohomogeneity-one. Then the metric is given by(5.2)with f3 = f2. The differencef 2

1 −f 2
2

has constant sign. Iff 2
1 ≤ f 2

2 , then

2f 2
2 = f 2

1 +
√

f 4
1 + 4ν2 and |f ′

1| ≤
√

f 4
1 + 4ν2

f 2
1 +

√
f 4

1 + 4ν2

for someν ≥ 0. If f 2
1 ≥ f 2

2 , then

2f 2
1 = f 2

2 + ν2f−2
2 and |f ′

2| ≤
√

f 4
2 + 4ν2

2f 2
2

for someν ≥ 0.
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Conversely, any smooth functionsf1 andf2 satisfying the above equations determine a
cosymplecticG2-structure.

Again, we may rescale and reparameterise to obtainν = 0 or 1.

7. Topology and boundary conditions

Let us now turn to discussion of the possible topologies of manifolds withG2-structure
and a compact simple symmetry groupG acting with cohomogeneity-one. General refer-
ences for the cohomogeneity-one situation may be found in[1,4].

LetM be a manifold of cohomogeneity-one underG with principal isotropy groupK and
baseB = M/G. The possible topologies forB are homeomorphic to eitherR, S1, [0,∞)

or [0, 1]. In the first case,M is homeomorphic to the productR × G/K and an invariant
tensorτ on M is smooth if and only ifτ is smooth considered as a function fromR to the
space ofK-invariant tensors on the isotropy representation of the principal orbit.

When the base is a circle, the total spaceM is homeomorphic to a quotient

R×h

G

K
,

where(t, gK) is identified with(t + 1, ghK) for some elementh ∈ NG(K), the normaliser
of K in G. Givenh andh′ in NG(K), these determine the same manifold ifhK= h′K and
they determine equivariantly diffeomorphic manifolds if they satisfyfhf−1 = h′ for some
f ∈ NG(K). For the principal orbits in question this translates into periodicity requirements
corresponding to the different orders of the elements ofNG(K)/K. An invariant tensorτt

must satisfy

h∗τt = τt+1

to be well defined.
When the base is a half-open interval, the end point is the image of a special orbit with

isotropy groupH , whereH/K is diffeomorphic to a sphereSm ⊂ V � R
m+1 for some

representationV of H . The total spaceM is then diffeomorphic to the vector bundle

M ∼= G×H V → G

H
.

We note that ifx ∈ Sm has isotropyK andh ∈ H satisfiesh · x = −x thenh defines an
elementhK ∈ NG(K)/K of order 2. Conversely, any non-trivial elementhK of NG(K)/K

of order 2 defines a subgroupH ⊂ G with H/K a sphere by takingH = K ∪ hK. An
invariant tensorτt onM must now satisfy

h∗τt = τ−t

if it is smooth. This requirement is in general only sufficient whenH/K ∼= Z2. If H/K

has positive dimension, a metric two-tensor onM0 = M \ π−1({0}) extends to a smooth
metric onM under the following two conditions. Firstly, the induced metricgt (H/K) on
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(0,∞)×H/K ⊂ M0 should satisfy

gt

(
H

K

)
= dt2 + f 2(t)g0,

where g0 is the standard metric on the sphere with sectional curvature one andf is
an odd function with|f ′(0)| = 1. Secondly,gt (X, X) should be positive everywhere
for Killing vector fields induced by elements ofh⊥ ⊂ g. For the cases we consider, a
G2-structure onM0 defined by a three-fromφ extends to a smoothG2-structure onM if
and only ifh∗φt = φ−t and the metric defined byφ extends to a smooth metric onM, see
Section 10.

Finally, consider the situation whereB is a closed interval. Letπ : M → B be the
projection. Then the subspacesM0 = π−1[0, 1) andM1 = π−1(0, 1] are diffeomorphic
to vector bundlesG ×Hi

Vi → G/Hi , whereHi acts transitively on the unit sphere inVi

with isotropyK. GivenG, K, H0 andH1, the possible diffeomorphism types ofM with
principal isotropy groupK and special isotropy groupsH0 andH1 are parameterised by
the double coset spaceN0\NG(K)/N1, whereNi := NG(K) ∩ NG(Hi). These double
cosets correspond to the different equivariant identifications we may make ofM0 \ π−1{0}
with M1 \ π−1{1}. The boundary conditions on tensors in this case are obtained from
those for the case of one singular orbit by considering their restrictions to the half-open
intervals.

We will employ the following notation for spaces of cohomogeneity-one with special
orbits. When the baseM/G is homeomorphic to the half-open interval we writeM =
[G/H |G/K), whereG/H is the special orbit over the end point andG/K the principal
orbit. When the base is a closed interval we writeM = [G/H0|G/K|G/H1].

We now turn to more detailed consideration of our particular principal orbit types.

8. Solutions: irreducible isotropy

This is the case of symmetryG2 with principal orbitG2/SU(3). The normaliser of SU(3)

is

NG2(SU(3)) = SU(3)
⋃

D7 SU(3),

whereD7 = diag(−1, 1,−1, 1,−1, 1,−1). To each of these two elements ofNG2(SU(3))/

SU(3) corresponds a quotientR×h G2/SU(3) with base diffeomorphic to a circle.
There are precisely two special orbit types:RP (6) = G2/NG2(SU(3)) and a point{∗} =

G2/G2. To these correspond firstly two spaces with base homeomorphic to [0,∞). The first
is the canonical line bundle overRP (6), the second isR7 viewed as a seven-dimensional
vector bundle over a point.

There are three spaces withB = [0, 1] corresponding to the three possible choices of
two special orbits. If both special orbits are points the space in question isS7; when one
is a point and the other isRP (6) the space is diffeomorphic toRP (7); and when both
areRP (6) we obtain the connected sumRP (7)#RP (7). The corresponding double coset
spaces have precisely one element and therefore there is only one diffeomorphism type in
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Table 1
G2 solutions with symmetryG2

M7 Holonomy and symplectic Weak holonomy Cosymplectic

S7 None Complete Complete
RP (7) None Complete Complete
RP (7)#RP (7) None None Complete
S1 × S6 None None Complete
R×D7 S6 NoG2-structure
[RP (6)|S6) None None Complete
R

7 Complete Incomplete Complete
R× S6 Incomplete Incomplete Complete

each case. The action ofD7 on the invariant tensors ofS6 is

D∗
7(g0, ω, α, β) = (g0,−ω,−α, β).

As a consequenceD∗
7 vol0 = −vol0. In particular, the spaceR×D7 S6 is not orientable and

therefore cannot carry aG2-structure.
WhenM has a special orbit with isotropyG2 at t = 0 the metricgt extends to a smooth

metric on a neighbourhood of the special orbit if and only if the functionf is odd with
|f ′(0)| = 1. The requirementD∗

7φt = φ−t now implies that sinθ is odd and cosθ is even
aroundt = 0. If, on the other hand, the special orbit att = 0 is RP (6), thenf must be
even and non-zero everywhere for the metric to extend smoothly. In that case cosθ must
be even and sinθ odd.

Now consider the cosymplectic equations. One solution is given byf ≡ c, where
c is a positive constant, andθ ≡ 0. This solution satisfies the boundary conditions for
[RP (6)|S6|RP (6)] and [RP (6)|S6), as well as the periodicity requirement forR×e S6 =
S1 × S6.

The unique solution to the symplectic equation satisfies the boundary conditions only
for R

7 = [∗|S6). The weak holonomy solutionsf (t) = 4λ−1 sin(λt/4) are smooth on
S7 = [∗|S6|∗] for t ∈ [0, 4π/λ] and onRP (7) = [∗|S6|RP (6)] for t ∈ [0, 2π/λ].
Different choices ofλ scale the metric by a homothety.

Theorem 8.1. Let M7 be a manifold withG2-structure preserved by an action ofG2 of
cohomogeneity-one. Then the principal orbit isG2/SU(3) andM7 is listed inTable 1. The
symplecticG2, holonomyG2 and weak holonomyG2 solutions are unique up to scale. The
first two are flat, the last has constant curvature.

9. Solutions: reducible isotropy

We first consider the instance of SU(3)-symmetry; that for Sp(2) will then follow rela-
tively easily. The principal orbits are SU(3)/T 2 and the normaliser ofT 2 in SU(3) is

NSU(3)(T
2) =

⋃
σ∈Σ3

Aσ T 2,
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whereΣ3 is the symmetric group on three elements and

A(123) =

 0 0 1

1 0 0
0 1 0


 and A(23) =


−1 0 0

0 0 1
0 1 0


 .

Therefore there are three spacesR×Aσ F1,2 over the circle corresponding toA(23), A(123)
ande.

There are two special orbit types:CP (2)1 = SU(3)/U(2)(23) andF(23) = F1,2/A(23) =
SU(3)/(T 2 ∪ A(23)T

2), where U(2)(23) is the U(2) ⊂ SU(3) containingT 2 ∪ A(23)T
2.

Corresponding to these there are two spaces with base homeomorphic to the half-open
interval.

The double coset spacesN0\NSU(3)(T
2)/N1 all have two components. Therefore, we

have six different cohomogeneity-one spaces with the closed interval as base. When both
special orbits are complex projective spaces, we may write the space from the trivial double
coset as [CP (2)1|F1,2|CP (2)1] and that from the non-trivial double coset as [CP (2)1|F1,2|
CP (2)2], whereCP (2)2 = SU(3)/U(2)(13). We use similar notation in the other cases.

Now consider in turn the actions of the elementsA(23) andA(123). The elementA(23)

acts with order 2 and transforms the SU(3)-invariant tensors ofF1,2 as

A∗
(23)(g1, g2, g3, ω1, ω2, ω3, α, β) = (g1, g3, g2,−ω1,−ω3,−ω2,−α, β).

This implies that the manifoldR ×A(23)
F1,2 cannot carry aG2-structure. It also leads to

boundary conditions on the metric and three-form for the two types of special orbit. For
special orbitCP (2)1 these translate into

f1 and sinθ are odd functions,

cosθ is an even function,

f 2
2 (t) = f 2

3 (−t), |f ′
1(0)| = 1 andf2(0) �= 0.

Those for the special orbitF(23) are

f1 and sinθ are even functions,

cosθ is an odd function,

f 2
2 (t) = f 2

3 (−t) andf1(0) �= 0 �= f2(0).

Note that in both cases the productf2f3 is even.
The action ofA(123) on the invariant tensors ofF1,2 is

A∗
(123)(g1, g2, g3, ω1, ω2, ω3, α, β) = (g2, g3, g1, ω2, ω3, ω1, α, β),

whence the periodicity conditions onR×A(123) F1,2 state thatf 2
1 (t) = f 2

2 (t+1) = f 2
3 (t+2).

Note that the tensors

g0 = g1 + g2 + g3, ω0 = ω1 + ω2 + ω3, α and β

all are invariant under

T (123) =
⋃

σ even

Aσ T 2. (9.1)
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Therefore,F(123) = SU(3)/T (123) is a second possible principal orbit for symmetry SU(3).
It is not hard to check thatA(123) generates the only possible finite action on the principal
orbits that preserves an SU(3)-invariantG2-structure. The normaliser ofT (123) in SU(3) is
of courseT (123) ∪ A(23)T

(123) andA(23) acts on the invariant tensors as

A∗
(23)(g0, ω0, α, β) = (g0,−ω0,−α, β).

For the principal orbitF(123), the analysis is now the same as for the case ofG2-symmetry
discussed in the previous section.

Returning to principal orbitF1,2, we see that takingf1 = f2 = f3 ≡ c with c a positive
constant, andθ ≡ 0 solves the SU(3)-symmetric cosymplectic equations as well as the
periodicity requirement onS1 × F1,2 andR ×A(123) F1,2 and the boundary conditions on
[F(23)|F1,2), [F(23)|F1,2|F(23)] and [F(23)|F1,2|F(13)].

Consider the cosymplecticG2-equations together with the boundary conditions for either
[CP (2)1|F1,2|CP (2)2] or [CP (2)1|F1,2|F(13)]. From(6.1), we have that two of the three
constantsµ, ν andν2 − µ2 must be zero. But this implies that the third constant is also
zero and thatf 2

1 = f 2
2 = f 2

3 . The boundary conditions now give thatf1 is both even and
odd att = 0 which clearly cannot be the case. Thus these spaces do not carry invariant
cosymplecticG2-structures.

Finally, let us consider the cosymplectic equations on [CP (2)1|F1,2|CP (2)1] and [CP (2)1
|F1,2|F(23)]. Solutions on these spaces can be obtained as follows. Set

dθ = (1+ sin2θ)1/4 dt,

and determine the remaining functions viaEq. (6.4). The metric is then

g = (1+ sin2θ)−1/2(dθ2 + sin2θg1 + (1+ sin2θ)(g2 + g3)),

and the three-form is

φ = (1+ sin2θ)−3/4(( sin2θ ω1 + (1+ sin2θ)(ω2 + ω3)) dθ

+ sinθ(1+ sin2θ)( cosθ α + sinθ β)).

With θ ∈ [0, π ] these solve the cosymplectic equations and the boundary conditions for
[CP (2)1|F1,2|CP (2)1]. Restrictingθ to [0, π/2] we also get a solution on [CP (2)1|F1,2|
F(23)].

This completes the discussion of the cosymplectic equations under SU(3)-symmetry. We
will return to the holonomy and weak holonomy equations after discussing the symmetry
group Sp(2).

Theorem 9.1. Let M7 be a manifold withG2-structure preserved by an action ofSU(3)

of cohomogeneity-one. The principal orbit is eitherF1,2 = SU(3)/T 2 or its Z3-quotient
F(123) = SU(3)/T (123), see(9.1). The possibleM7 are listed inTable 2 together with
information on the existence of cosymplecticG2-structures.

The topological analysis in the case of Sp(2)-symmetry is very similar to theG2 case for
the simple reason that the normaliser of U(1) Sp(1) again has two components:
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Table 2
G2 solutions with symmetry SU(3). HereFσ = F1,2/Aσ andFΣ = F1,2/Σ3

M7 Holonomy and symplectic Weak holonomy Cosymplectic

[CP (2)1|F1,2|CP (2)1] None None Complete
[CP (2)1|F1,2|CP (2)2] None None None
[CP (2)1|F1,2|F(23)] None None Complete
[CP (2)1|F1,2|F(13)] None None None
[F(23)|F1,2|F(23)] None None Complete
[F(23)|F1,2|F(13)] None None Complete
S1 × F1,2 None None Complete
R×A(23)

F1,2 NoG2-structure
R×A(123) F1,2 None None Complete
[CP (2)1|F1,2) Complete None Complete
[F(23)|F1,2) None None Complete

R× F1,2 Incomplete Incomplete Complete
[FΣ |F(123)|FΣ ] None None Complete
[FΣ |F(123)) None None Complete
S1 × F(123) None None Complete
R×A(23)

F(123) No G2-structure
R× F(123) Incomplete Incomplete Complete

NSp(2)(U(1) Sp(1)) = U(1) Sp(1)
⋃

D2 U(1) Sp(1),

where

D2 =
(

j 0
0 1

)
.

Therefore, we have two possible spacesR ×h CP (3) with base a circle, and two possible
special orbit types:

S4 = HP (1) = Sp(2)

Sp(1)× Sp(1)
, C = CP (3)

Z2
= Sp(2)

NSp(2)(U(1) Sp(1))
.

Let us now consider the action ofD2 on the invariant tensors ofCP (3):

D∗
2(g1, g2, ω1, ω2, α, β) = (g1, g2,−ω1,−ω2, α,−β).

This means that the boundary conditions are precisely those for SU(3)-symmetry withf2 ≡
f3. In particular, the compact, complete solutions to the cosymplectic equations found for
SU(3)-symmetry also give solutions for Sp(2)-symmetry. The results of the analysis in this
case may be found inTable 3. Note that the existence of an invariantG2-structure implies
that the only possible principal orbit isCP (3).

Let us now turn to the weak holonomy equations, firstly for SU(3). Eqs. (5.6c) and (6.1)
imply thatf 2

1 = f 2
2 = f 2

3 and thatfi = −εjk2λ−1 sinθ . Eqs. (5.6a) and (5.6b)are now

(θ ′ + 4λ) sin2θ(4 cos2θ − 1) = 0, (θ ′ + 4λ) sin3θ cosθ = 0.

As fi is non-zero on the principal orbits, we get thatθ ′ = −4λ. We deduce that we have
the same behaviour for Sp(2)-symmetry.
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Table 3
G2 solutions with symmetry Sp(2). HereC denotesCP (3)/Z2

M7 Holonomy and symplectic Weak holonomy Cosymplectic

[S4|CP (3)|S4] None None Complete
[S4|CP (3)|C] None None Complete
[C|CP (3)|C] None None Complete
S1 × CP (3) None None Complete
R×D2 CP (3) No G2-structure
[S4|CP (3)) Complete None Complete
[C|CP (3)) None None Complete
R× CP (3) Incomplete Incomplete Complete

Theorem 9.2. Up to scale, the spaces(0, π/2)×G/K, withG/K = F1,2,F(123) or CP (2)

admit unique structures with weak holonomyG2 invariant under the action ofSU(3) or
Sp(2). The metric and three-forms are

g = 4 dθ2 + sin2θ g0, φ = sin2θ(ω0 ∧ dθ + sinθ( cosθ α + sinθ β)),

whereg0 =
∑

i gi and ω0 =
∑

i ωi . These structures are incomplete and do not extend
over any special orbits.

Next we discuss the holonomy solutions. The second equation in(5.5)implies that sinθ ≡
0. Let εθ = cosθ . Then the cosymplecticequations (5.4)show that the first equation in
(5.5) is automatically satisfied. We thus have thatf1 satisfies the differential equation

f ′
1 = εθ

√
Ξ(f1, µ, ν),

whereΞ is defined in(6.5). As Ξ(f1, µ, ν) ≥ 1/4, we have that|f1| ≥ (1/2)t + c and so
any complete solution has exactly one special orbit andf1 vanishes on that orbit.

If ν = 0 thenf 2
1 = f 2

2 = f 2
3 = (1/4)t , which does not satisfy any of the boundary

conditions for symmetry SU(3) or Sp(2).
We may now takeν > 0 and introduce the parameter changer(t)2 = f 2

1 (t)f3(t)2, with
r(t) > 0. Then|r ′| = |(f1f3)′| = |f2| is strictly positive. Using(5.4) and (6.1), we get

f 2
1 = r

√
r2 − µ2

r2 + ν2 − µ2
, f 2

2 = r−1
√

(r2 − µ2)(r2 + ν2 − µ2),

f 3
3 = r

√
r2 + ν2 − µ2

r2 − µ2

and

dt2 = r dr2√
(r2 − µ2)(r2 + ν2 − µ2)

.

These are ‘triaxial’ metrics with holonomyG2 and SU(3)-symmetry. To be complete there
must be a special orbit. This requiresf1 = 0 andf2, f3 �= 0 at t = 0. The first condition
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impliesr(0)2 = µ2, the second givesµ = 0. Thus this solution hasf 2
2 (t) = f 2

3 (t), which
is the metric found by Bryant and Salamon[7] on the bundle of anti-self-dual two-forms
overCP (2). This solution also defines a structure with Sp(2)-symmetry.

Theorem 9.3. The spaceR × F1,2 admits a one-parameter family of holonomyG2
metrics withSU(3)-symmetry. Only one metric extends to a complete metric, and the
underlying manifold is[CP (2)1|F1,2), the bundle of anti-self-dual two-forms over
CP (2).

The spaceR × F(123) admits a unique incomplete metric with holonomyG2 invariant
underSU(3).

The spaceR × CP (3) admits two metrics with holonomyG2. One is incomplete, the
other extends to a complete metric on[S4|CP (3)), the bundle of anti-self-dual two-forms
overS4.

Remark 9.4. As Andrew Dancer pointed out to us the substitutions dt = f1f2f3 ds and
wi = fj fk for each even permutation(ijk) of (123) reduce the SU(3)-symmetric holonomy
G2-equations to Euler’s equations for a spinning top. These equations may then be solved
by elliptic integrals. However, as this is no longer an arc-length parameterisation, one now
has to work harder to determine questions of completeness.

Finally, we considerEq. (5.5)for a symplecticG2-structure with symmetry SU(3). We
have sinθ = 0. Putεθ = cosθ and set

h3 = f1f2f3, x = f−2
2 h2 and y = f−2

3 h2,

sox andy are positive.Eq. (5.5)then give

6εθ h′ = xy+ 1

x
+ 1

y
. (9.2)

On (0,∞)2, the right-hand side has a global minimum at(1, 1) and so|h′| ≥ 1/2.
This implies that there are no periodic solutions and that any complete solution has ex-
actly one special orbit. Asf2f3 is even, we also see thatf1 vanishes at the special or-
bit. Therefore, we have exactly the same topologies as for holonomyG2. Note, how-
ever, that there are more solutions to the symplectic equations than for holonomyG2.
A particularly simple example of this is furnished by settingf1(t) = t , f 2

2 (t) = 1 +
(t/2)2 andf2 ≡ f3. Complete triaxial solutions may be obtained as follows: begin with
the complete U(3)-symmetric metric with holonomyG2; hold h fixed, make a smooth
deformation of x on [1,∞) and determine the corresponding deformation ofy

by (9.2).

Proposition 9.5. Let M7 admit aG2-structure which is preserved by a cohomogeneity-
one action of a compact simple Lie group. Then, M7 admits an invariant symplectic
G2-structure if and only ifM7 admits an invariant metric with holonomyG2. Similarly,
complete symplecticG2-structures only exist on manifolds with completeG2 holonomy
metrics.
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10. Smoothness of the three-form

In this section, we will briefly indicate how to check that the three-formφ is smooth once
we haveh∗φt = φ−t and smoothness of the metricg. The only case where significant work
is required is that of special orbitCP (2) under SU(3)-symmetry. The case of special orbit
S4 under Sp(2)-symmetry follows by similar arguments.

The manifold [CP (2)|F1,2) is SU(3)-equivariantly isomorphic to the bundle of anti-self-
dual two-formsΛ2− overCP (2). Bryant and Salamon[7] showed how to construct holonomy
G2 metrics onΛ2−, but they did not write down the general SU(3)-invariant three-form
because they treated all four manifolds at once. In the following, we specialise Bryant and
Salamon’s approach in the style of Swann[21].

If we write CP (2) = SU(3)/U(2), thenP = SU(3) is a principal bundle of frames
with structure group U(2) = U(1)×Z/2 Sp(1). Under the action of U(2), we haveΛ1,0 ∼=
HL + L̄2, whereL ∼= C andH ∼= C

2 are the standard representations of U(1) and Sp(1),
respectively. This may be regarded as an identification not only of representations but also of
bundles overCP (2), if to a representationV of U(2) we associate the bundle, also denotedV ,

P ×U(2) V ,

which isP × V modulo the action(u, ξ) #→ (u · g, g−1 · ξ). We then haveΛ2− = S2H ∼=
Im H. Let θ = θ0 + θ1i + θ2j + θ3k ∈ Ω1(P, H) be the canonical one-form. Writeη =
η1i + η2j + η3k ∈ Ω1(P, Im H) for thesp(1)-part of the U(2) Levi-Civita connection. As
the Fubini–Study metric is self-dual and Einstein, one finds that

dη + η ∧ η = cθ̄ ∧ θ

for some positive constantc (a positive constant multiple of the scalar curvature). Ifx =
x1i + x2j + x3k is the coordinate on ImH then letr2 = xx̄ = −x2. The one-form

α = dx + ηx − xη

is semi-basic onP × S2H . One may now check that

ω1 = r−3αxα, ω2 = 4c(r−1θxθ̄ + θ̄ iθ), ω3 = 4c(r−1θxθ̄ − θ̄ iθ),

α = −4c(r−1θαθ̄ + r−3θxαxθ̄), β = −4cr−2θ(αx − xα)θ̄

satisfyEq. (5.1)and hence define the required invariant forms onΛ2−.
To determine whether a particular formφ given by(5.3) is smooth onΛ2−, consider the

pull-back ofφ to P × S2H . There smoothness reduces to a question of smooth forms on
S2H = R

3. Writing these forms in terms of dx1, dx2 and dx3 one now applies the results
of Glaeser[12], see also[18], to determine the conditions for the coefficients to be smooth.
Onceg is smooth andh∗φt = φ−t one finds that there are no extra conditions.
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