JOURNAL OF

Cohomogeneity-one G_{2}-structures

Richard Cleyton, Andrew Swann*
Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark

Received 15 November 2001

Abstract

G_{2}-manifolds with a cohomogeneity-one action of a compact Lie group G are studied. For G simple, all solutions with holonomy G_{2} and weak holonomy G_{2} are classified. The holonomy G_{2} solutions are necessarily Ricci-flat and there is a one-parameter family with $\mathrm{SU}(3)$-symmetry. The weak holonomy G_{2} solutions are Einstein of positive scalar curvature and are uniquely determined by the simple symmetry group. During the proof the equations for G_{2}-symplectic and G_{2}-cosymplectic structures are studied and the topological types of the manifolds admitting such structures are determined. New examples of compact G_{2}-cosymplectic manifolds and complete G_{2}-symplectic structures are found. © 2002 Elsevier Science B.V. All rights reserved.

MSC: 53C25; 57M50; 57S15
Subj. Class.: Differential geometry

Keywords: G_{2}; Holonomy; Weak holonomy; Cohomogeneity-one

1. Introduction

A G_{2}-structure on a seven-dimensional manifold M is an identification of the tangent space with the imaginary octonians. Equivalently, the geometry is determined by a three-form ϕ which at each point is of 'generic type', in that it lies in a particular open orbit for the action of $\operatorname{GL}(7, \mathbb{R})$ (such forms are 'stable' in Hitchin's terminology [14]). The three-form ϕ determines a Riemannian metric g and hence a Hodge-star operator $*$.

If ϕ and the four-form $* \phi$ are both closed, then g is Ricci-flat and has holonomy contained in G_{2}. This is one of the two exceptional holonomy groups in the Berger classification (see

[^0][2,6]). The first non-trivial complete examples were constructed by Bryant and Salamon [7] and compact examples have since been found by Joyce (first in $[15,16]$ and more recently in [17]) and by Kovalev [19].

If $\mathrm{d} \phi=\lambda * \phi$, for some non-zero constant λ, then g is an Einstein metric of positive scalar curvature and M is said to have weak holonomy G_{2}. This terminology was first introduced by Gray [13]. Many homogeneous examples are known. For example, each Aloff-Walach space $\mathrm{SU}(3) / \mathrm{U}(1)_{k, \ell}$, where $\mathrm{U}(1)_{k, \ell}=\left\{\operatorname{diag}\left(\mathrm{e}^{\mathrm{i} k \theta}, \mathrm{e}^{\mathrm{i} \ell \theta}, \mathrm{e}^{-\mathrm{i}(k+\ell) \theta}\right)\right\}$ and k, ℓ are integers, carries two such metrics (see [8]). As k and ℓ vary, this family includes infinitely many different homeomorphisms types. A classification of the compact homogeneous manifolds with weak holonomy G_{2} is given in [11].

In this paper, we study G_{2}-structures with a cohomogeneity-one action of a compact Lie group G. This means that G acts on M preserving the three-form ϕ and that the generic orbit on M has dimension 7-1=6. We will first determine the connected groups G that can act. Thereafter, we study the equations for holonomy and weak holonomy G_{2}-structures in the case that G is simple and determine all solutions. The simple groups in question are G_{2}, $\operatorname{Sp}(2)$ and $\mathrm{SU}(3)$. In each case, we find that the weak holonomy G_{2} solutions are unique; they are only complete in the case with symmetry G_{2}, and here one gets the round metric on the seven-sphere (and its quotient $\mathbb{R} P(7)$). The limited number of solutions is in strong contrast to the homogeneous case. For holonomy G_{2}, the solutions for the first two symmetry groups are isolated, whereas for $\mathrm{SU}(3)$ there is a one-parameter family of solutions. This family contains a unique complete metric, which turns out to have $\mathrm{U}(3)$-symmetry. The G_{2}-symmetric solution is flat, whereas those with symmetry $\mathrm{Sp}(2)$ and $\mathrm{U}(3)$ are the metrics found by Bryant and Salamon [7]. In private communications, Andrew Dancer and McKenzie Wang, and Gary Gibbons and Chris Pope tell us that they have also recently found the one-dimensional family of triaxial $\mathrm{SU}(3)$-symmetric metrics. Note that by considering non-simple symmetry groups new complete metrics with holonomy G_{2} have been found by Brandhuber et al. [3].

Both weak holonomy and holonomy structures satisfy $\mathrm{d} * \phi=0$ and so are special examples of cosymplectic G_{2}-structures. Any hypersurface in an eight-manifold with holonomy $\operatorname{Spin}(7)$ carries a cosymplectic G_{2}-structure and homogeneous cosymplectic G_{2}-structures with symmetry $\operatorname{Sp}(2)$ are behind the new $\operatorname{Spin}(7)$-holonomy examples constructed in [10]. Our approach gives examples of compact cohomogeneity-one manifolds with cosymplectic G_{2}-structures. By Hitchin [14] these are hypersurfaces in manifolds of holonomy $\operatorname{Spin}(7)$. It is therefore an interesting question for future work, which of these $\operatorname{Spin}(7)$ metrics are complete.

The other part of the holonomy G_{2}-equations is $\mathrm{d} \phi=0$. Solutions to this equation define what are known as symplectic G_{2}-structures. We show that for cohomogeneity-one manifolds with simple symmetry group, a symplectic G_{2}-structure exist only if the manifold also admits a holonomy G_{2} metric.

2. G_{2}-structures

Let W be \mathbb{R}^{7} with its usual inner product g_{0}. Take $\left\{v^{0}, \ldots, v^{6}\right\}$ to be an orthonormal basis for W and write $v_{01}=v_{0} v_{1}=v_{0} \wedge v_{1}$, etc., in the exterior algebra $\Lambda^{*} W^{*}$. For each
$\theta \in \mathbb{R}$, we define a three-form $\phi(\theta)$ on W by

$$
\begin{equation*}
\phi(\theta)=\omega_{0} \wedge v_{0}+\cos \theta \alpha_{0}+\sin \theta \beta_{0} \tag{2.1}
\end{equation*}
$$

where $\alpha_{0}=v_{246}-v_{235}-v_{145}-v_{136}, \beta_{0}=v_{135}-v_{146}-v_{236}-v_{245}$ and $\omega_{0}=v_{12}+v_{34}+v_{56}$.
The Lie group G_{2} may be defined to be the stabiliser of $\phi(0)$ under the action of GL $(7, \mathbb{R})$. From this, Bryant shows that G_{2} is a compact, connected, simply-connected Lie group of dimension 14 [5]. The subgroup of G_{2} fixing v^{0} is isomorphic to $\mathrm{SU}(3)$. Indeed, in the basis $u_{0}=v_{0}, u_{k}=v_{2 k-1}+\mathrm{i} v_{2 k}, k=1,2,3$, for $W^{*} \otimes \mathbb{C}$, we have

$$
\phi(\theta)=\frac{1}{2} \mathrm{i}\left(\left(u_{1} \bar{u}_{1}+u_{2} \bar{u}_{2}+u_{3} \bar{u}_{3}\right) u_{0}+\mathrm{e}^{-\mathrm{i} \theta} u_{1} u_{2} u_{3}-\mathrm{e}^{\mathrm{i} \theta} \bar{u}_{1} \bar{u}_{2} \bar{u}_{3}\right) .
$$

Thus, $\phi(\theta)=\mathrm{e}^{-\mathrm{i} \theta / 3} \phi(0)$ showing that stabilisers of $\phi(\theta)$ are all conjugate in $\mathrm{SO}(7)$ and that $6 g_{0}(v, w)$ vol $\left.\left._{0}=(v\lrcorner \phi(\theta)\right) \wedge(w\lrcorner \phi(\theta)\right) \wedge \phi(\theta)$ is independent of θ.

Conversely, the Lie group G_{2} acts transitively on the unit sphere in \mathbb{R}^{7}. A choice of unit vector v^{0}, determines a stabiliser isomorphic to $\operatorname{SU}(3)$ and the action of $\mathrm{SU}(3)$ on $\left\langle v^{0}\right\rangle^{\perp}$ fixes a Kähler form ω_{0} and a complex volume which may be written as $\mathrm{e}^{\mathrm{i} \theta} u_{1} u_{2} u_{3}$. In this way, we see that there is an orthonormal basis so that the G_{2} three-form is $\phi(\theta)$ as in (2.1).

A G_{2}-structure on a seven-dimensional manifold M is specified by fixing a three-form ϕ such that for each p there is a basis of $W=T_{p} M$ so that $\phi_{p}=\phi(\theta)$ for some θ. We say that a compact Lie group G acts on $\left(M^{7}, \phi\right)$ with cohomogeneity-one if G preserves the three-form ϕ and the largest G-orbits are of dimension 6. In this case, $B=M / G$ is a one-dimensional manifold, quite possibly with boundary. The orbits lying over the interior of B are all isomorphic to G / K, where $K=K_{p}$ is the stabiliser of a $p \in M$ with $G \cdot p \in \operatorname{Int} B$. We call these orbits principal and any remaining orbits are called special. Let G / H be a special orbit. Using the action of G, we may assume that H is a subgroup of K. A necessary and sufficient condition for M to be a smooth manifold is that for each special orbit G / H, the quotient H / K is a sphere [20].

3. Principal orbit structure

The requirement that G acts on M with cohomogeneity-one preserving ϕ implies that the representation of the isotropy group $K=K_{p}$ on the tangent space of a principal orbit is as a subgroup of $\operatorname{SU}(3)$ on its standard six-dimensional representation $\llbracket \Lambda^{1,0} \rrbracket \cong$ \mathbb{R}^{6}. Considering the Lie algebras only we find that \mathfrak{k} must be isomorphic to either $\mathfrak{s u}(3)$, $\mathfrak{u}(2), \mathfrak{s u}(2), 2 \mathfrak{u}(1), \mathfrak{u}(1)$ or $\{0\}$. The possible isotropy representations are then the real representations underlying the following three-dimensional complex representations: the standard representation of $\mathfrak{s u}(3)$, the representation $L^{2} \oplus \bar{L} V$ of $\mathfrak{u}(2)$, the representations $S^{2} V$ and $\mathbb{C} \oplus V$ of $\mathfrak{s u}(2)$, the representation $L_{1} \oplus L_{2} \oplus \bar{L}_{1} \bar{L}_{2}$ of $2 \mathfrak{u}(1)$, the representation $L \oplus \bar{L} \oplus \mathbb{C}$ of $\mathfrak{u}(1)$ and finally the trivial representation $3 \mathbb{C}$ of $\{0\}$. For each of the non-trivial representations U of a possible isotropy algebra \mathfrak{k} the direct sum $\mathfrak{g}=\mathfrak{k} \oplus U$ happens to determine a unique compact real Lie algebra. These are, respectively, $\mathfrak{g}_{2}, \mathfrak{s p}(2), 3 \mathfrak{s u}(2)$, $\mathfrak{s u}(3) \oplus \mathfrak{u}(1), \mathfrak{s u}(3)$ and $2 \mathfrak{s u}(2) \oplus \mathfrak{u}(1)$. The trivial representation may be taken to represent either $2 \mathfrak{s u}(2), \mathfrak{s u}(2) \oplus 3 \mathfrak{u}(1)$ or $6 \mathfrak{u}(1)$.

If, on the other hand, G / K is any effective six-dimensional homogeneous space with K acting on the isotropy representation as a subgroup of $\mathrm{SU}(3)$, then we may pick an
invariant Kähler form ω and an invariant complex volume form α on G / K and obtain a non-degenerate three-form on $M=\mathbb{R} \times G / K$ by defining $\phi=\mathrm{d} t \wedge \omega+\operatorname{Re}(\alpha)$.

Theorem 3.1. Let $\left(M^{7}, \phi\right)$ be a G_{2}-manifold of cohomogeneity-one under a compact, connected Lie group. Then, as almost effective homogeneous spaces, the principal orbits are one of the following:

$$
\begin{aligned}
& S^{6}=\frac{G_{2}}{\mathrm{SU}(3)}, \quad \mathbb{C} P(3)=\frac{\mathrm{Sp}(2)}{\mathrm{SU}(2) \mathrm{U}(1)}, \quad F_{1,2}=\frac{\mathrm{SU}(3)}{T^{2}}, \\
& S^{3} \times S^{3}=\frac{\mathrm{SU}(2)^{3}}{\mathrm{SU}(2)}=\frac{\mathrm{SU}(2)^{2} T^{1}}{T^{1}}=\mathrm{SU}(2)^{2}, \\
& S^{5} \times S^{1}=\frac{\mathrm{SU}(3) T^{1}}{\mathrm{SU}(2)}, \quad S^{3} \times\left(S^{1}\right)^{3}=\mathrm{SU}(2) T^{3}, \quad\left(S^{1}\right)^{6}=T^{6},
\end{aligned}
$$

up to finite quotients. Conversely, any cohomogeneity-one manifold with one of these as principal orbit carries a G_{2}-structure.

In this paper, we will consider the case when G is simple. The principal orbits are the first three cases listed above. The first of these is distinguished from the other two in that K acts irreducibly on U.

4. Irreducible isotropy

This is the case when the principal orbit is $G_{2} / \mathrm{SU}(3)$. The isotropy representation is the real module underlying the standard representation $\Lambda^{1,0} \cong \mathbb{C}^{3}$ of $\mathrm{SU}(3)$. Up to scale this admits precisely one invariant two-form ω and one invariant symmetric two-tensor g_{0}. The space of invariant three-forms is two-dimensional, spanned by α and β. We fix the scales as follows. Set g_{0} to be the canonical metric on $S^{6}=G_{2} / \mathrm{SU}(3)$ with sectional curvature one. Then let ω, α and β be such that $\omega^{3}=6 \operatorname{vol}_{0}, \mathrm{~d} \omega=3 \alpha, *_{0} \alpha=\beta$ and $\mathrm{d} \beta=-2 \omega^{2}$.

Let γ be a geodesic through p orthogonal to the principal orbit $G_{2} / \mathrm{SU}(3)$ and parameterise γ by arc-length $t \in I \subset \mathbb{R}$. Then the union of principal orbits is $I \times G_{2} / \mathrm{SU}(3) \subset M$ and there are smooth functions $f, \theta: I \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
& g=\mathrm{d} t^{2}+f^{2} g_{0}, \quad \operatorname{vol}=f^{6} \operatorname{vol}_{0} \wedge \mathrm{~d} t \tag{4.1}\\
& \phi=f^{2} \omega \wedge \mathrm{~d} t+f^{3}(\cos \theta \alpha+\sin \theta \beta) \tag{4.2}
\end{align*}
$$

Note that $f(t)$ is non-zero for each $t \in I$. Our choice of scales now gives

$$
\begin{aligned}
& * \phi=\frac{1}{2} f^{4} \omega^{2}+f^{3}(\cos \theta \beta-\sin \theta \alpha) \wedge \mathrm{d} t, \quad \mathrm{~d} * \phi=2 f^{3}\left(f^{\prime}-\cos \theta\right) \omega^{2} \wedge \mathrm{~d} t \\
& \mathrm{~d} \phi=\left(3 f^{2}-\left(f^{3} \cos \theta\right)^{\prime}\right) \alpha \wedge \mathrm{d} t-\left(f^{3} \sin \theta\right)^{\prime} \beta \wedge \mathrm{d} t-2 f^{3} \sin \theta \omega^{2}
\end{aligned}
$$

We first consider the cosymplectic G_{2}-equations $\mathrm{d} * \phi=0$ which are equivalent to $f^{\prime}=\cos \theta$. Locally, these are described by the one arbitrary function θ. Alternatively, one may regard them as determined by solutions to the differential inequality $\left|f^{\prime}\right| \leq 1$.

Geometrically the solutions may be understood as follows. Consider $\mathbb{R}^{8}=W \times \mathbb{R}$ with its standard $\operatorname{Spin}(7)$ four-form $\Omega=\phi(0) \wedge v_{8}+*_{7} \phi(0)$. As $\operatorname{Spin}(7)=\operatorname{stab}_{\mathrm{GL}(8, \mathbb{R})} \Omega$ acts transitively on the unit sphere in \mathbb{R}^{8} with stabiliser G_{2}, we see that for any unit vector N, the three-form $N\lrcorner \Omega$ defines a G_{2}-structure on $\langle N\rangle^{\perp}$ and that $\Omega=\phi \wedge N^{\mathrm{b}}+* \phi$. As Ω is closed we, therefore, have Gray's observation that any oriented hypersurface $H \subset \mathbb{R}^{8}$ with unit normal N carries a cosymplectic G_{2}-structure.

The hypersurface $H=\{(v, s) \in W \times \mathbb{R}:\|v\|=r(s)\}$ is of cohomogeneity-one under the action of G_{2}. Its metric is $\left(1+(\mathrm{d} r / \mathrm{d} s)^{2}\right) \mathrm{d} s^{2}+r^{2} g_{0}$. Reparameterising so that $\mathrm{d} t=\sqrt{\left(1+(\mathrm{d} r / \mathrm{d} s)^{2}\right)} \mathrm{d} s$, we obtain a metric in the form (4.1) with $f(t)=r(s(t))$ and hence $f^{\prime}(t)=(\mathrm{d} r / \mathrm{d} s) / \sqrt{1+(\mathrm{d} r / \mathrm{d} s)^{2}}$. However, this has $\left|f^{\prime}(t)\right|<1$, so we may write $f^{\prime}=\cos \theta$ and we see that locally each cosymplectic G_{2}-solution is given this way away from $|\cos \theta|=1$.

The symplectic G_{2}-equations $\mathrm{d} \phi=0$ imply first that $\sin \theta \equiv 0$. We then get $|\cos \theta|=1$ and $f^{\prime}=\cos \theta$, so such metrics are also cosymplectic and have holonomy G_{2}. However, the solutions are simply $f(t)= \pm t$ and we get the standard flat metric on \mathbb{R}^{7} with its standard G_{2}-structure.

The equations $\mathrm{d} \phi=\lambda * \phi$ for weak holonomy G_{2} give

$$
\lambda f=-4 \sin \theta \quad \text { and } \quad 4 \theta^{\prime}=-\lambda
$$

Thus, $f(t)=(4 / \lambda) \sin (\lambda t / 4)$. The hypersurface discussion above shows that this is locally the round metric on S^{7}.

5. Reducible isotropy: the equations

Let us begin with the case of $\operatorname{SU}(3)$-symmetry. The principal isotropy group $K=T^{2}=$ $S_{1}^{1} \times S_{2}^{1}$ acts on the standard representation $\Lambda^{1,0} \cong \mathbb{C}^{3}$ as $L_{1}+L_{2}+\bar{L}_{1} \bar{L}_{2}$, where $L_{i} \cong \mathbb{C}$, are the standard representations of $S_{i}^{1} \cong \mathrm{U}(1)$. Using the isomorphism $\mathfrak{s u}(3) \otimes \mathbb{C} \cong \Lambda_{0}^{1,1}$, we find that the isotropy representation is $\llbracket L_{1} \bar{L}_{2} \rrbracket+\llbracket L_{1} L_{2}^{2} \rrbracket+\llbracket L_{1}^{2} L_{2} \rrbracket$. Each irreducible submodule carries an invariant metric g_{i} and symplectic form $\omega_{i}, i=1,2,3$, but the space of invariant three-forms has dimension 2. Identifying T^{2} with the diagonal matrices in $\mathrm{SU}(3)$, we fix the basis

$$
\begin{array}{lll}
E_{1}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right), & E_{2}=\frac{1}{2 \mathrm{i}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), & E_{3}=\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), \\
E_{4}=\frac{1}{2 \mathrm{i}}\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), & E_{5}=\frac{1}{2}\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & E_{6}=\frac{1}{2 \mathrm{i}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
\end{array}
$$

of the tangent space at the origin and let $\left\{e_{1}, \ldots, e_{6}\right\}$ denote the dual basis. We may now write

$$
\begin{aligned}
& g_{1}=e_{1}^{2}+e_{2}^{2}, \quad g_{2}=e_{3}^{2}+e_{4}^{2}, \quad g_{3}=e_{5}^{2}+e_{6}^{2}, \\
& \omega_{1}=e_{12}, \quad \omega_{2}=e_{34}, \quad \omega_{3}=e_{56},
\end{aligned}
$$

and find that

$$
\alpha=e_{246}-e_{235}-e_{145}-e_{136}, \quad \beta=e_{135}-e_{146}-e_{236}-e_{245}
$$

is a basis for the invariant three-forms. Put $\mathrm{vol}_{0}=e_{123456}$. As left-invariant one-forms on $\mathrm{SU}(3)$ we have $\mathrm{d} e_{i}\left(E_{j}, E_{k}\right)=e_{i}\left(\left[E_{j}, E_{k}\right]\right)$. One may thus show that on $\mathrm{SU}(3) / T^{2}$ one has

$$
\begin{align*}
& \mathrm{d} \omega_{1}=\mathrm{d} \omega_{2}=\mathrm{d} \omega_{3}=\frac{1}{2} \alpha, \quad \mathrm{~d} \alpha=0, \quad \mathrm{~d} \beta=-2\left(\omega_{1} \omega_{2}+\omega_{2} \omega_{3}+\omega_{3} \omega_{1}\right) \quad \text { and } \\
& \mathrm{d}\left(\omega_{i} \omega_{j}\right)=0 \tag{5.1}
\end{align*}
$$

Any $\mathrm{SU}(3)$-invariant G_{2}-structure on $I \times \mathrm{SU}(3) / T^{2}$ has

$$
\begin{equation*}
g=\mathrm{d} t^{2}+f_{1}^{2} g_{1}+f_{2}^{2} g_{2}+f_{3}^{2} g_{3}, \quad \operatorname{vol}=f_{1}^{2} f_{2}^{2} f_{3}^{2} \operatorname{vol}_{0} \wedge \mathrm{~d} t \tag{5.2}
\end{equation*}
$$

where $t \in I \subset \mathbb{R}$ is the arc-length parameter of an orthogonal geodesic and f_{i} are non-vanishing functions. Using the equation $(X\lrcorner \phi) \wedge(Y\lrcorner \phi) \wedge \phi=6 g(X, Y)$ vol and normalisation $\phi \wedge * \phi=7 \mathrm{vol}$, we find that the corresponding invariant three-form is

$$
\begin{equation*}
\phi=\left(f_{1}^{2} \omega_{1}+f_{2}^{2} \omega_{2}+f_{3}^{2} \omega_{3}\right) \wedge \mathrm{d} t+f_{1} f_{2} f_{3}(\cos \theta \alpha+\sin \theta \beta) \tag{5.3}
\end{equation*}
$$

for some function $\theta(t)$. The G_{2}-structure now has

$$
* \phi=f_{2}^{2} f_{3}^{2} \omega_{2} \omega_{3}+f_{3}^{2} f_{1}^{2} \omega_{3} \omega_{1}+f_{1}^{2} f_{2}^{2} \omega_{1} \omega_{2}+f_{1} f_{2} f_{3}(\cos \theta \beta-\sin \theta \alpha) \wedge \mathrm{d} t
$$

and hence

$$
\begin{aligned}
& \mathrm{d} * \phi=\left(\left(f_{2}^{2} f_{3}^{2}\right)^{\prime}-2 f_{1} f_{2} f_{3} \cos \theta\right) \omega_{2} \omega_{3} \wedge \mathrm{~d} t \\
&+\left(\left(f_{3}^{2} f_{1}^{2}\right)^{\prime}-2 f_{1} f_{2} f_{3} \cos \theta\right) \omega_{3} \omega_{1} \wedge \mathrm{~d} t \\
&+\left(\left(f_{1}^{2} f_{2}^{2}\right)^{\prime}-2 f_{1} f_{2} f_{3} \cos \theta\right) \omega_{1} \omega_{2} \wedge \mathrm{~d} t \\
& \mathrm{~d} \phi=\left(\frac{1}{2}\left(f_{1}^{2}+f_{2}^{2}+f_{3}^{2}\right)-\left(f_{1} f_{2} f_{3} \cos \theta\right)^{\prime}\right) \alpha \wedge \mathrm{d} t \\
&-\left(f_{1} f_{2} f_{3} \sin \theta\right)^{\prime} \beta \wedge \mathrm{d} t-2 f_{1} f_{2} f_{3} \sin \theta\left(\omega_{1} \omega_{2}+\omega_{2} \omega_{3}+\omega_{3} \omega_{1}\right) .
\end{aligned}
$$

We therefore have that the $\mathrm{SU}(3)$-invariant G_{2}-structure is cosymplectic if

$$
\begin{equation*}
\left(f_{1}^{2} f_{2}^{2}\right)^{\prime}=\left(f_{3}^{2} f_{1}^{2}\right)^{\prime}=\left(f_{2}^{2} f_{3}^{2}\right)^{\prime}=2 f_{1} f_{2} f_{3} \cos \theta \tag{5.4}
\end{equation*}
$$

It is G_{2}-symplectic if

$$
\begin{equation*}
\left(f_{1} f_{2} f_{3} \cos \theta\right)^{\prime}=\frac{1}{2}\left(f_{1}^{2}+f_{2}^{2}+f_{3}^{2}\right) \quad \text { and } \quad f_{1} f_{2} f_{3} \sin \theta=0 \tag{5.5}
\end{equation*}
$$

The equations for weak holonomy G_{2} are

$$
\begin{align*}
& \left(f_{1} f_{2} f_{3} \cos \theta\right)^{\prime}=\frac{1}{2}\left(f_{1}^{2}+f_{2}^{2}+f_{3}^{2}\right)+\lambda f_{1} f_{2} f_{3} \sin \theta \tag{5.6a}\\
& \left(f_{1} f_{2} f_{3} \sin \theta\right)^{\prime}=-\lambda f_{1} f_{2} f_{3} \cos \theta \tag{5.6b}\\
& -2 f_{1} f_{2} f_{3} \sin \theta=\lambda f_{1}^{2} f_{2}^{2}=\lambda f_{2}^{2} f_{3}^{2}=\lambda f_{3}^{2} f_{1}^{2} \tag{5.6c}
\end{align*}
$$

Let us now consider the case of $\mathrm{Sp}(2)$-symmetry. The principal isotropy group $K=$ $\mathrm{U}(1) \times \mathrm{Sp}(1)$ acts on the standard representation $E \cong \mathbb{C}^{4}$ as $E \cong H+L+\bar{L}$, where $H \cong$ \mathbb{C}^{2} and $L \cong \mathbb{C}$ are the standard representations of $\mathrm{Sp}(1)=\mathrm{SU}(2)$ and $\mathrm{U}(1)$, respectively.

Using $\mathfrak{s p}(2) \otimes \mathbb{C} \cong S^{2} E$ we find that the isotropy representation is $\llbracket L^{2} \rrbracket+\llbracket H \bar{L} \rrbracket$. Both of these modules carry an invariant metric g_{i} and symplectic form ω_{i}. The space of invariant three-forms on their sum is two-dimensional. We give the isotropy representation the basis

$$
\begin{aligned}
& E_{1}=\frac{1}{2}\left(\begin{array}{ll}
0 & 0 \\
0 & \mathrm{j}
\end{array}\right), \quad E_{2}=\frac{1}{2}\left(\begin{array}{cc}
0 & 0 \\
0 & -\mathrm{k}
\end{array}\right), \quad E_{3}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \\
& E_{4}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
0 & \mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad E_{5}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
0 & \mathrm{j} \\
\mathrm{j} & 0
\end{array}\right), \quad E_{6}=\frac{1}{2 \sqrt{2}}\left(\begin{array}{cc}
0 & \mathrm{k} \\
\mathrm{k} & 0
\end{array}\right) .
\end{aligned}
$$

Then the dual elements $\left\{e_{1}, \ldots, e_{6}\right\}$ are such that $\left\{e_{1}, e_{2}\right\}$ is a basis for $\llbracket L^{2} \rrbracket^{*}$ and $\left\{e_{3}, \ldots, e_{6}\right\}$ is a basis for $\llbracket H \bar{L} \rrbracket^{*}$. We scale g_{i} and ω_{i} so that

$$
g_{1}=e_{1}^{2}+e_{2}^{2}, \quad g_{2}=e_{3}^{2}+e_{4}^{2}+e_{5}^{2}+e_{6}^{2}, \quad \omega_{1}=e_{12}, \quad \omega_{2}=e_{34}+e_{56}
$$

Then

$$
\alpha=e_{246}-e_{235}-e_{145}-e_{136}, \quad \beta=e_{135}-e_{146}-e_{236}-e_{245}
$$

is a basis for the invariant three-forms. Put $\operatorname{vol}_{0}=e_{123456}$. Using the Lie algebra structure of $\mathfrak{s p}(2)$, one finds that the corresponding left-invariant forms on $\mathrm{Sp}(2) /(\mathrm{U}(1) \times \mathrm{Sp}(1))$ satisfy

$$
\mathrm{d} \omega_{1}=\frac{1}{2} \alpha, \quad \mathrm{~d} \omega_{2}=\alpha, \quad \mathrm{d} \alpha=0 \quad \text { and } \quad \mathrm{d} \beta=-2 \omega_{1} \omega_{2}-\omega_{2}^{2}
$$

Proceeding as in the $\mathrm{SU}(3)$-case one finds that the $\mathrm{Sp}(2)$-invariant G_{2}-structures are given by Eqs. (5.2) and (5.3) with $f_{3} \equiv f_{2}$. Computing further, one finds that the equations for these structures to be cosymplectic, symplectic or have weak holonomy G_{2} are those for $\mathrm{SU}(3)$-symmetry with $f_{3} \equiv f_{2}$. We may therefore treat $\mathrm{Sp}(2)$-symmetry as if it were a special case of $\mathrm{SU}(3)$-symmetry.

6. Solving the cosymplectic G_{2}-equations

Consider the cosymplectic G_{2}-equation (5.4). The differences of the differentials gives that $f_{i}^{2}\left(f_{j}^{2}-f_{k}^{2}\right)$ is constant for any permutation (ijk) of (123). We may therefore relable the f_{i} so that $f_{3}^{2} \geq f_{2}^{2} \geq f_{1}^{2} \geq 0$ for all t and write

$$
\begin{equation*}
f_{1}^{2}\left(f_{3}^{2}-f_{2}^{2}\right)=\mu^{2}, \quad f_{2}^{2}\left(f_{3}^{2}-f_{1}^{2}\right)=v^{2}, \quad f_{3}^{2}\left(f_{2}^{2}-f_{1}^{2}\right)=v^{2}-\mu^{2} \tag{6.1}
\end{equation*}
$$

for some constants $v \geq \mu \geq 0$.
Let us first deal with two special cases. If $v=0$, then $f_{1}^{2}=f_{2}^{2}=f_{3}^{2}$ and we are left with the equation

$$
2 f_{1}^{\prime}= \pm \cos \theta
$$

Up to a factor of 2 this is just the equation obtained for G_{2}-symmetry in Section 4. Note that we have $\left|f_{1}^{\prime}\right| \leq 1 / 2$.

If $v>\mu=0$, then $2 f_{2}^{2}=f_{1}^{2}+\sqrt{f_{1}^{4}+4 \nu^{2}}$ and $f_{1}^{\prime}=\cos \theta\left(1+f_{1}^{2} / \sqrt{f_{1}^{4}+4 \nu^{2}}\right)^{-1}$, with θ an arbitrary function. Note that in this case $\left|f_{1}^{\prime}\right| \leq 1$ and $\left|f_{2}^{\prime}\right|=\left|f_{1} \cos \theta / 2 f_{2}\right|<1 / 2$.

The general case is $v \geq \mu>0$. Here $f_{3}^{2}>f_{2}^{2} \geq f_{1}^{2}>0$ and Eq. (6.1) may be rearranged to give

$$
\begin{align*}
& f_{2}^{2}+v^{2} f_{2}^{-2}=f_{3}^{2}+\left(v^{2}-\mu^{2}\right) f_{3}^{-2} \tag{6.2a}\\
& f_{3}^{2}-\left(v^{2}-\mu^{2}\right) f_{3}^{-2}=f_{1}^{2}+\mu^{2} f_{1}^{-2} \tag{6.2b}\\
& f_{1}^{2}-\mu^{2} f_{1}^{-2}=f_{2}^{2}-v^{2} f_{2}^{-2} \tag{6.2c}
\end{align*}
$$

Regarding Eqs. (6.2a)-(6.2c) as quadratic in f_{i}^{2}, one sees that the corresponding discriminants are non-negative.

Let $\Delta(i ; j)$ be the discriminant of (6.2a) with respect to f_{j}^{2}. Then we have

$$
\begin{aligned}
\Delta_{1} & :=\Delta(2 ; 3)=\left(f_{1}^{2}+\mu^{2} f_{1}^{-2}\right)^{2}+4\left(v^{2}-\mu^{2}\right) \\
& =\left(f_{1}^{2}-\mu^{2} f_{1}^{-2}\right)^{2}+4 v^{2}=\Delta(3 ; 2)=\left(f_{3}^{2}+\left(v^{2}-\mu^{2}\right) f_{3}^{-2}\right)\left(f_{2}^{2}+v^{2} f_{2}^{-2}\right), \\
\Delta_{2} & :=\Delta(3 ; 1)=\left(f_{2}^{2}-v^{2} f_{2}^{-2}\right)^{2}+4 \mu^{2}=\left(f_{2}^{2}+v^{2} f_{2}^{-2}\right)^{2}-4\left(v^{2}-\mu^{2}\right) \\
& =\Delta(1 ; 3)=\left(f_{1}^{2}+\mu^{2} f_{1}^{-2}\right)\left(f_{3}^{2}-\left(v^{2}-\mu^{2}\right) f_{3}^{-2}\right), \\
\Delta_{3} & :=\Delta(1 ; 2)=\left(f_{3}^{2}+\left(v^{2}-\mu^{2}\right) f_{3}^{-2}\right)^{2}-4 v^{2} \\
& =\left(f_{3}^{2}-\left(v^{2}-\mu^{2}\right) f_{3}^{-2}\right)^{2}-4 \mu^{2}=\Delta(2 ; 1)=\left(f_{2}^{2}-v^{2} f_{2}^{-2}\right)\left(f_{1}^{2}-\mu^{2} f_{1}^{-2}\right) .
\end{aligned}
$$

The positivity of Δ_{3} written as $\Delta(1 ; 2)$ implies that $f_{3}^{4}-2 v f_{3}^{2}+v^{2} \geq \mu^{2}$ which in turns gives either $f_{3}^{2} \leq v-\mu$ or $f_{3}^{2} \geq v+\mu$. However, Eq. (6.2b) implies that $f_{3}^{4}>v^{2}-\mu^{2}=$ $(\nu+\mu)(\nu-\mu)>(v-\mu)^{2}$, so

$$
f_{3}^{2} \geq v+\mu
$$

Also Eq. (6.2c) implies that $\varepsilon=\operatorname{sgn}\left(f_{1}^{2}-\mu\right)=\operatorname{sgn}\left(f_{2}^{2}-v\right)$ is well defined. Using these remarks, we can choose consistent branches of square roots in solving the quadratic equations (6.2a)-(6.2c). For example, solving (6.2c) for f_{2}^{2} and writing the discriminant as a function of f_{1}^{2}, we get

$$
\begin{aligned}
\left(f_{1}^{2} f_{2}^{2}\right)^{\prime} & =\frac{1}{2}\left(f_{1}^{4}+f_{1}^{2} \sqrt{\Delta_{1}}-\mu^{2}\right)^{\prime}=2\left(f_{1}^{4}+f_{1}^{2} \sqrt{\Delta_{1}}-\mu^{2}+2 v^{2}\right) \frac{f_{1}^{3} f_{1}^{\prime}}{\sqrt{\Delta_{1}}} \\
& =4\left(f_{1}^{2} f_{2}^{2}+v^{2}\right) \frac{f_{1}^{3} f_{1}^{\prime}}{\sqrt{\Delta_{1}}}=\frac{4 f_{2}^{2} f_{3}^{2} f_{1}^{3} f_{1}^{\prime}}{\sqrt{\Delta_{1}}}
\end{aligned}
$$

Doing similar computations for the other $\left(f_{i}^{2} f_{j}^{2}\right)^{\prime}$ and putting the results into (5.4) gives

$$
\begin{align*}
& f_{1}^{\prime}=\frac{1}{2} f_{2}^{-1} f_{3}^{-1} \cos \theta \sqrt{\Delta_{1}}=\frac{1}{2} \varepsilon_{23} \cos \theta \sqrt{\left(1+v^{2} f_{2}^{-4}\right)\left(1+\left(v^{2}-\mu^{2}\right) f_{3}^{-4}\right)}, \tag{6.3a}\\
& f_{2}^{\prime}=\frac{1}{2} f_{3}^{-1} f_{1}^{-1} \cos \theta \sqrt{\Delta_{2}}=\frac{1}{2} \varepsilon_{31} \cos \theta \sqrt{\left(1-\left(v^{2}-\mu^{2}\right) f_{3}^{-4}\right)\left(1+\mu^{2} f_{1}^{-4}\right)}, \tag{6.3b}\\
& f_{3}^{\prime}=\frac{1}{2} \varepsilon f_{1}^{-1} f_{2}^{-1} \cos \theta \sqrt{\Delta_{3}}=\frac{1}{2} \varepsilon_{12}^{*} \cos \theta \sqrt{\left(1-\mu^{2} f_{1}^{-4}\right)\left(1-v^{2} f_{2}^{-4}\right)}, \tag{6.3c}
\end{align*}
$$

where $\varepsilon_{i j}=\operatorname{sgn}\left(f_{i} f_{j}\right)$ and $\varepsilon_{i j}^{*}=\varepsilon_{i j} \varepsilon$. We may rewrite the right-hand side of Eq. (6.3a) so that it only contains θ and f_{1}. Then for a given function θ, we get an implicit differential equation for f_{1} :

$$
\begin{equation*}
f_{1}^{\prime}=\varepsilon \cos \theta \sqrt{\Xi\left(f_{1}, \mu, v\right)} \tag{6.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Xi\left(f_{1}, \mu, v\right)=\frac{f_{1}^{8}+2\left(2 v^{2}-\mu^{2}\right) f_{1}^{4}+\mu^{4}}{2 f_{1}^{4}\left(f_{1}^{4}+\left(2 v^{2}-\mu^{2}\right)+\sqrt{f_{1}^{8}+2\left(2 v^{2}-\mu^{2}\right) f_{1}^{4}+\mu^{4}}\right)} \tag{6.5}
\end{equation*}
$$

Note that this function $\Xi\left(f_{1}, \mu, v\right)$ is positive and decreasing with

$$
\lim _{\left|f_{1}\right| \rightarrow \infty} \Xi\left(f_{1}, \mu, v\right)=\frac{1}{4}
$$

Alternatively, the structure may be determined by the function f_{1}.
Theorem 6.1. Consider a cosymplectic G_{2}-structure preserved by an action of $\mathrm{SU}(3)$ of cohomogeneity-one. Then the metric is given by Eq. (5.2). Arrange the coefficients so that $f_{3}^{2} \geq f_{2}^{2} \geq f_{1}^{2}$. Then

$$
\begin{equation*}
\left|f_{1}^{\prime}\right| \leq \sqrt{\Xi\left(f_{1}, \mu, v\right)} \tag{6.6}
\end{equation*}
$$

for some constants $v \geq \mu \geq 0$.
Conversely, any smooth function f_{1} satisfying the differential inequality (6.6) gives a cosymplectic G_{2}-structure with f_{2} determined by Eq. (6.2c), f_{3} by Eq. (6.2b) and θ by $f_{3} \cos \theta=\left(f_{1} f_{2}\right)^{\prime}$.

Note that by rescaling and reparameterising we may rid ourselves of one of the parameters and, for example, when $\mu \neq 0$ set either μ, v or $\mu+v$ equal to 1 .

The case of $\operatorname{Sp}(2)$-symmetry is now obtained by setting either $\mu=0$ or $\mu=\nu$.
Theorem 6.2. Consider a cosymplectic G_{2}-structure preserved by an action of $\operatorname{Sp}(2)$ of cohomogeneity-one. Then the metric is given by (5.2) with $f_{3}=f_{2}$. The difference $f_{1}^{2}-f_{2}^{2}$ has constant sign. If $f_{1}^{2} \leq f_{2}^{2}$, then

$$
2 f_{2}^{2}=f_{1}^{2}+\sqrt{f_{1}^{4}+4 v^{2}} \quad \text { and } \quad\left|f_{1}^{\prime}\right| \leq \frac{\sqrt{f_{1}^{4}+4 \nu^{2}}}{f_{1}^{2}+\sqrt{f_{1}^{4}+4 v^{2}}}
$$

for some $v \geq 0$. If $f_{1}^{2} \geq f_{2}^{2}$, then

$$
2 f_{1}^{2}=f_{2}^{2}+v^{2} f_{2}^{-2} \quad \text { and } \quad\left|f_{2}^{\prime}\right| \leq \frac{\sqrt{f_{2}^{4}+4 v^{2}}}{2 f_{2}^{2}}
$$

for some $v \geq 0$.

Conversely, any smooth functions f_{1} and f_{2} satisfying the above equations determine a cosymplectic G_{2}-structure.

Again, we may rescale and reparameterise to obtain $v=0$ or 1 .

7. Topology and boundary conditions

Let us now turn to discussion of the possible topologies of manifolds with G_{2}-structure and a compact simple symmetry group G acting with cohomogeneity-one. General references for the cohomogeneity-one situation may be found in [1,4].

Let M be a manifold of cohomogeneity-one under G with principal isotropy group K and base $B=M / G$. The possible topologies for B are homeomorphic to either $\mathbb{R}, S^{1},[0, \infty)$ or $[0,1]$. In the first case, M is homeomorphic to the product $\mathbb{R} \times G / K$ and an invariant tensor τ on M is smooth if and only if τ is smooth considered as a function from \mathbb{R} to the space of K-invariant tensors on the isotropy representation of the principal orbit.

When the base is a circle, the total space M is homeomorphic to a quotient

$$
\mathbb{R} \times_{h} \frac{G}{K}
$$

where $(t, g K)$ is identified with $(t+1, g h K)$ for some element $h \in N_{G}(K)$, the normaliser of K in G. Given h and h^{\prime} in $N_{G}(K)$, these determine the same manifold if $h K=h^{\prime} K$ and they determine equivariantly diffeomorphic manifolds if they satisfy $f f^{-1}=h^{\prime}$ for some $f \in N_{G}(K)$. For the principal orbits in question this translates into periodicity requirements corresponding to the different orders of the elements of $N_{G}(K) / K$. An invariant tensor τ_{t} must satisfy

$$
h^{*} \tau_{t}=\tau_{t+1}
$$

to be well defined.
When the base is a half-open interval, the end point is the image of a special orbit with isotropy group H, where H / K is diffeomorphic to a sphere $S^{m} \subset V \simeq \mathbb{R}^{m+1}$ for some representation V of H. The total space M is then diffeomorphic to the vector bundle

$$
M \cong G \times_{H} V \rightarrow \frac{G}{H}
$$

We note that if $x \in S^{m}$ has isotropy K and $h \in H$ satisfies $h \cdot x=-x$ then h defines an element $h K \in N_{G}(K) / K$ of order 2. Conversely, any non-trivial element $h K$ of $N_{G}(K) / K$ of order 2 defines a subgroup $H \subset G$ with H / K a sphere by taking $H=K \cup h K$. An invariant tensor τ_{t} on M must now satisfy

$$
h^{*} \tau_{t}=\tau_{-t}
$$

if it is smooth. This requirement is in general only sufficient when $H / K \cong \mathbb{Z}_{2}$. If H / K has positive dimension, a metric two-tensor on $M_{0}=M \backslash \pi^{-1}(\{0\})$ extends to a smooth metric on M under the following two conditions. Firstly, the induced metric $g_{t}(H / K)$ on
$(0, \infty) \times H / K \subset M_{0}$ should satisfy

$$
g_{t}\left(\frac{H}{K}\right)=\mathrm{d} t^{2}+f^{2}(t) g_{0}
$$

where g_{0} is the standard metric on the sphere with sectional curvature one and f is an odd function with $\left|f^{\prime}(0)\right|=1$. Secondly, $g_{t}(X, X)$ should be positive everywhere for Killing vector fields induced by elements of $\mathfrak{h}^{\perp} \subset \mathfrak{g}$. For the cases we consider, a G_{2}-structure on M_{0} defined by a three-from ϕ extends to a smooth G_{2}-structure on M if and only if $h^{*} \phi_{t}=\phi_{-t}$ and the metric defined by ϕ extends to a smooth metric on M, see Section 10.

Finally, consider the situation where B is a closed interval. Let $\pi: M \rightarrow B$ be the projection. Then the subspaces $M_{0}=\pi^{-1}[0,1)$ and $M_{1}=\pi^{-1}(0,1]$ are diffeomorphic to vector bundles $G \times_{H_{i}} V_{i} \rightarrow G / H_{i}$, where H_{i} acts transitively on the unit sphere in V_{i} with isotropy K. Given G, K, H_{0} and H_{1}, the possible diffeomorphism types of M with principal isotropy group K and special isotropy groups H_{0} and H_{1} are parameterised by the double coset space $N_{0} \backslash N_{G}(K) / N_{1}$, where $N_{i}:=N_{G}(K) \cap N_{G}\left(H_{i}\right)$. These double cosets correspond to the different equivariant identifications we may make of $M_{0} \backslash \pi^{-1}\{0\}$ with $M_{1} \backslash \pi^{-1}\{1\}$. The boundary conditions on tensors in this case are obtained from those for the case of one singular orbit by considering their restrictions to the half-open intervals.

We will employ the following notation for spaces of cohomogeneity-one with special orbits. When the base M / G is homeomorphic to the half-open interval we write $M=$ $[G / H \mid G / K)$, where G / H is the special orbit over the end point and G / K the principal orbit. When the base is a closed interval we write $M=\left[G / H_{0}|G / K| G / H_{1}\right]$.

We now turn to more detailed consideration of our particular principal orbit types.

8. Solutions: irreducible isotropy

This is the case of symmetry G_{2} with principal orbit $G_{2} / \mathrm{SU}(3)$. The normaliser of $\mathrm{SU}(3)$ is

$$
N_{G_{2}}(\mathrm{SU}(3))=\mathrm{SU}(3) \bigcup D_{7} \mathrm{SU}(3)
$$

where $D_{7}=\operatorname{diag}(-1,1,-1,1,-1,1,-1)$. To each of these two elements of $N_{G_{2}}(\mathrm{SU}(3)) /$ $\mathrm{SU}(3)$ corresponds a quotient $\mathbb{R} \times{ }_{h} G_{2} / \mathrm{SU}(3)$ with base diffeomorphic to a circle.

There are precisely two special orbit types: $\mathbb{R} P(6)=G_{2} / N_{G_{2}}(\mathrm{SU}(3))$ and a point $\{*\}=$ G_{2} / G_{2}. To these correspond firstly two spaces with base homeomorphic to $[0, \infty)$. The first is the canonical line bundle over $\mathbb{R} P(6)$, the second is \mathbb{R}^{7} viewed as a seven-dimensional vector bundle over a point.

There are three spaces with $B=[0,1]$ corresponding to the three possible choices of two special orbits. If both special orbits are points the space in question is S^{7}; when one is a point and the other is $\mathbb{R} P(6)$ the space is diffeomorphic to $\mathbb{R} P(7)$; and when both are $\mathbb{R} P(6)$ we obtain the connected sum $\mathbb{R} P(7) \# \mathbb{R} P(7)$. The corresponding double coset spaces have precisely one element and therefore there is only one diffeomorphism type in

Table 1
G_{2} solutions with symmetry G_{2}

M^{7}	Holonomy and symplectic	Weak holonomy	Cosymplectic
S^{7}	None	Complete	Complete
$\mathbb{R} P(7)$	None	Complete	Complete
$\mathbb{R} P(7) \# \mathbb{R} P(7)$	None	None	Complete
$S^{1} \times S^{6}$	None	None	Complete
$\mathbb{R} \times D_{7} S^{6}$	No G_{2}-structure		
$\left[\mathbb{R} P(6) \mid S^{6}\right)$	None	None	Complete
\mathbb{R}	Complete	Incomplete	Complete
$\mathbb{R} \times S^{6}$	Incomplete	Incomplete	Complete

each case. The action of D_{7} on the invariant tensors of S^{6} is

$$
D_{7}^{*}\left(g_{0}, \omega, \alpha, \beta\right)=\left(g_{0},-\omega,-\alpha, \beta\right) .
$$

As a consequence D_{7}^{*} vol $_{0}=-$ vol $_{0}$. In particular, the space $\mathbb{R} \times{ }_{D_{7}} S^{6}$ is not orientable and therefore cannot carry a G_{2}-structure.

When M has a special orbit with isotropy G_{2} at $t=0$ the metric g_{t} extends to a smooth metric on a neighbourhood of the special orbit if and only if the function f is odd with $\left|f^{\prime}(0)\right|=1$. The requirement $D_{7}^{*} \phi_{t}=\phi_{-t}$ now implies that $\sin \theta$ is odd and $\cos \theta$ is even around $t=0$. If, on the other hand, the special orbit at $t=0$ is $\mathbb{R} P(6)$, then f must be even and non-zero everywhere for the metric to extend smoothly. In that case $\cos \theta$ must be even and $\sin \theta$ odd.

Now consider the cosymplectic equations. One solution is given by $f \equiv c$, where c is a positive constant, and $\theta \equiv 0$. This solution satisfies the boundary conditions for $\left[\mathbb{R} P(6)\left|S^{6}\right| \mathbb{R} P(6)\right]$ and $\left[\mathbb{R} P(6) \mid S^{6}\right)$, as well as the periodicity requirement for $\mathbb{R} \times{ }_{e} S^{6}=$ $S^{1} \times S^{6}$.

The unique solution to the symplectic equation satisfies the boundary conditions only for $\mathbb{R}^{7}=\left[* \mid S^{6}\right)$. The weak holonomy solutions $f(t)=4 \lambda^{-1} \sin (\lambda t / 4)$ are smooth on $S^{7}=\left[*\left|S^{6}\right| *\right]$ for $t \in[0,4 \pi / \lambda]$ and on $\mathbb{R} P(7)=\left[*\left|S^{6}\right| \mathbb{R} P(6)\right]$ for $t \in[0,2 \pi / \lambda]$. Different choices of λ scale the metric by a homothety.

Theorem 8.1. Let M^{7} be a manifold with G_{2}-structure preserved by an action of G_{2} of cohomogeneity-one. Then the principal orbit is $G_{2} / \mathrm{SU}(3)$ and M^{7} is listed in Table 1. The symplectic G_{2}, holonomy G_{2} and weak holonomy G_{2} solutions are unique up to scale. The first two are flat, the last has constant curvature.

9. Solutions: reducible isotropy

We first consider the instance of $\mathrm{SU}(3)$-symmetry; that for $\mathrm{Sp}(2)$ will then follow relatively easily. The principal orbits are $\mathrm{SU}(3) / T^{2}$ and the normaliser of T^{2} in $\mathrm{SU}(3)$ is

$$
N_{\mathrm{SU}(3)}\left(T^{2}\right)=\bigcup_{\sigma \in \Sigma_{3}} A_{\sigma} T^{2},
$$

where Σ_{3} is the symmetric group on three elements and

$$
A_{(123)}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad \text { and } \quad A_{(23)}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Therefore there are three spaces $\mathbb{R} \times A_{\sigma} F_{1,2}$ over the circle corresponding to $A_{(23)}, A_{(123)}$ and e.

There are two special orbit types: $\mathbb{C} P(2)_{1}=\mathrm{SU}(3) / \mathrm{U}(2)_{(23)}$ and $\mathcal{F}_{(23)}=F_{1,2} / A_{(23)}=$ $\mathrm{SU}(3) /\left(T^{2} \cup A_{(23)} T^{2}\right)$, where $\mathrm{U}(2)_{(23)}$ is the $\mathrm{U}(2) \subset \mathrm{SU}(3)$ containing $T^{2} \cup A_{(23)} T^{2}$. Corresponding to these there are two spaces with base homeomorphic to the half-open interval.

The double coset spaces $N_{0} \backslash N_{\mathrm{SU}(3)}\left(T^{2}\right) / N_{1}$ all have two components. Therefore, we have six different cohomogeneity-one spaces with the closed interval as base. When both special orbits are complex projective spaces, we may write the space from the trivial double coset as $\left[\mathbb{C} P(2)_{1}\left|F_{1,2}\right| \mathbb{C} P(2)_{1}\right]$ and that from the non-trivial double coset as $\left[\mathbb{C} P(2)_{1}\left|F_{1,2}\right|\right.$ $\mathbb{C} P(2)_{2}$], where $\mathbb{C} P(2)_{2}=\mathrm{SU}(3) / \mathrm{U}(2)_{(13)}$. We use similar notation in the other cases.

Now consider in turn the actions of the elements $A_{(23)}$ and $A_{(123)}$. The element $A_{(23)}$ acts with order 2 and transforms the $\mathrm{SU}(3)$-invariant tensors of $F_{1,2}$ as

$$
A_{(23)}^{*}\left(g_{1}, g_{2}, g_{3}, \omega_{1}, \omega_{2}, \omega_{3}, \alpha, \beta\right)=\left(g_{1}, g_{3}, g_{2},-\omega_{1},-\omega_{3},-\omega_{2},-\alpha, \beta\right)
$$

This implies that the manifold $\mathbb{R} \times_{A_{(23)}} F_{1,2}$ cannot carry a G_{2}-structure. It also leads to boundary conditions on the metric and three-form for the two types of special orbit. For special orbit $\mathbb{C} P(2)_{1}$ these translate into
f_{1} and $\sin \theta$ are odd functions,
$\cos \theta$ is an even function,
$f_{2}^{2}(t)=f_{3}^{2}(-t),\left|f_{1}^{\prime}(0)\right|=1$ and $f_{2}(0) \neq 0$

Those for the special orbit $\mathcal{F}_{(23)}$ are

$$
f_{1} \text { and } \sin \theta \text { are even functions, }
$$

$\cos \theta$ is an odd function,
$f_{2}^{2}(t)=f_{3}^{2}(-t)$ and $f_{1}(0) \neq 0 \neq f_{2}(0)$.
Note that in both cases the product $f_{2} f_{3}$ is even.
The action of $A_{(123)}$ on the invariant tensors of $F_{1,2}$ is

$$
A_{(123)}^{*}\left(g_{1}, g_{2}, g_{3}, \omega_{1}, \omega_{2}, \omega_{3}, \alpha, \beta\right)=\left(g_{2}, g_{3}, g_{1}, \omega_{2}, \omega_{3}, \omega_{1}, \alpha, \beta\right)
$$

whence the periodicity conditions on $\mathbb{R} \times{ }_{A_{(123)}} F_{1,2}$ state that $f_{1}^{2}(t)=f_{2}^{2}(t+1)=f_{3}^{2}(t+2)$. Note that the tensors

$$
g_{0}=g_{1}+g_{2}+g_{3}, \quad \omega_{0}=\omega_{1}+\omega_{2}+\omega_{3}, \quad \alpha \quad \text { and } \quad \beta
$$

all are invariant under

$$
\begin{equation*}
T^{(123)}=\bigcup_{\sigma \text { even }} A_{\sigma} T^{2} \tag{9.1}
\end{equation*}
$$

Therefore, $\mathcal{F}_{(123)}=\operatorname{SU}(3) / T^{(123)}$ is a second possible principal orbit for symmetry $\mathrm{SU}(3)$. It is not hard to check that $A_{(123)}$ generates the only possible finite action on the principal orbits that preserves an $\mathrm{SU}(3)$-invariant G_{2}-structure. The normaliser of $T^{(123)}$ in $\mathrm{SU}(3)$ is of course $T^{(123)} \cup A_{(23)} T^{(123)}$ and $A_{(23)}$ acts on the invariant tensors as

$$
A_{(23)}^{*}\left(g_{0}, \omega_{0}, \alpha, \beta\right)=\left(g_{0},-\omega_{0},-\alpha, \beta\right)
$$

For the principal orbit $\mathcal{F}_{(123)}$, the analysis is now the same as for the case of G_{2}-symmetry discussed in the previous section.

Returning to principal orbit $F_{1,2}$, we see that taking $f_{1}=f_{2}=f_{3} \equiv c$ with c a positive constant, and $\theta \equiv 0$ solves the $\mathrm{SU}(3)$-symmetric cosymplectic equations as well as the periodicity requirement on $S^{1} \times F_{1,2}$ and $\mathbb{R} \times_{A_{(123)}} F_{1,2}$ and the boundary conditions on $\left[\mathcal{F}_{(23)} \mid F_{1,2}\right),\left[\mathcal{F}_{(23)}\left|F_{1,2}\right| \mathcal{F}_{(23)}\right]$ and $\left[\mathcal{F}_{(23)}\left|F_{1,2}\right| \mathcal{F}_{(13)}\right]$.

Consider the cosymplectic G_{2}-equations together with the boundary conditions for either $\left[\mathbb{C} P(2)_{1}\left|F_{1,2}\right| \mathbb{C} P(2)_{2}\right]$ or $\left[\mathbb{C} P(2)_{1}\left|F_{1,2}\right| \mathcal{F}_{(13)}\right]$. From (6.1), we have that two of the three constants μ, v and $v^{2}-\mu^{2}$ must be zero. But this implies that the third constant is also zero and that $f_{1}^{2}=f_{2}^{2}=f_{3}^{2}$. The boundary conditions now give that f_{1} is both even and odd at $t=0$ which clearly cannot be the case. Thus these spaces do not carry invariant cosymplectic G_{2}-structures.

Finally, let us consider the cosymplectic equations on $\left[\mathbb{C} P(2)_{1}\left|F_{1,2}\right| \mathbb{C} P(2)_{1}\right]$ and $\left[\mathbb{C} P(2)_{1}\right.$ $\left.\left|F_{1,2}\right| \mathcal{F}_{(23)}\right]$. Solutions on these spaces can be obtained as follows. Set

$$
\mathrm{d} \theta=\left(1+\sin ^{2} \theta\right)^{1 / 4} \mathrm{~d} t,
$$

and determine the remaining functions via Eq. (6.4). The metric is then

$$
g=\left(1+\sin ^{2} \theta\right)^{-1 / 2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta g_{1}+\left(1+\sin ^{2} \theta\right)\left(g_{2}+g_{3}\right)\right)
$$

and the three-form is

$$
\begin{aligned}
\phi= & \left(1+\sin ^{2} \theta\right)^{-3 / 4}\left(\left(\sin ^{2} \theta \omega_{1}+\left(1+\sin ^{2} \theta\right)\left(\omega_{2}+\omega_{3}\right)\right) \mathrm{d} \theta\right. \\
& \left.+\sin \theta\left(1+\sin ^{2} \theta\right)(\cos \theta \alpha+\sin \theta \beta)\right) .
\end{aligned}
$$

With $\theta \in[0, \pi]$ these solve the cosymplectic equations and the boundary conditions for $\left[\mathbb{C} P(2)_{1}\left|F_{1,2}\right| \mathbb{C} P(2)_{1}\right]$. Restricting θ to $[0, \pi / 2]$ we also get a solution on $\left[\mathbb{C} P(2)_{1}\left|F_{1,2}\right|\right.$ $\mathcal{F}_{(23)}$].

This completes the discussion of the cosymplectic equations under $\mathrm{SU}(3)$-symmetry. We will return to the holonomy and weak holonomy equations after discussing the symmetry group $\mathrm{Sp}(2)$.

Theorem 9.1. Let M^{7} be a manifold with G_{2}-structure preserved by an action of $\mathrm{SU}(3)$ of cohomogeneity-one. The principal orbit is either $F_{1,2}=\mathrm{SU}(3) / T^{2}$ or its \mathbb{Z}_{3}-quotient $\mathcal{F}_{(123)}=\mathrm{SU}(3) / T^{(123)}$, see (9.1). The possible M^{7} are listed in Table 2 together with information on the existence of cosymplectic G_{2}-structures.

The topological analysis in the case of $\operatorname{Sp}(2)$-symmetry is very similar to the G_{2} case for the simple reason that the normaliser of $\mathrm{U}(1) \mathrm{Sp}(1)$ again has two components:

Table 2
G_{2} solutions with symmetry $\operatorname{SU}(3)$. Here $\mathcal{F}_{\sigma}=F_{1,2} / A_{\sigma}$ and $\mathcal{F}_{\Sigma}=F_{1,2} / \Sigma_{3}$

M^{7}	Holonomy and symplectic	Weak holonomy	Cosymplectic
$\left[\mathbb{C} P(2)_{1}\left\|F_{1,2}\right\| \mathbb{C} P(2)_{1}\right]$	None	None	Complete
$\left[\mathbb{C} P(2)_{1}\left\|F_{1,2}\right\| \mathbb{C} P(2)_{2}\right]$	None	None	None
$\left[\mathbb{C} P(2)_{1}\left\|F_{1,2}\right\| \mathcal{F}_{(23)}\right]$	None	None	Complete
$\left[\mathbb{C} P(2)_{1}\left\|F_{1,2}\right\| \mathcal{F}_{(13)}\right]$	None	None	None
$\left[\mathcal{F}_{(23)}\left\|F_{1,2}\right\| \mathcal{F}_{(23)}\right]$	None	None	Complete
$\left[\mathcal{F}_{(23)}\left\|F_{1,2}\right\| \mathcal{F}_{(13)}\right]$	None	None	Complete
$S^{1} \times F_{1,2}$	None	None	Complete
$\mathbb{R} \times A_{(23)} F_{1,2}$	No G_{2}-structure		
$\mathbb{R} \times A_{(123)} F_{1,2}$	None	None	Complete
$\left[\mathbb{C} P(2)_{1} \mid F_{1,2}\right)$	Complete	None	Complete
$\left[\mathcal{F}_{(23)} \mid F_{1,2}\right)$	None	None	Complete
$\mathbb{R} \times F_{1,2}$	Incomplete	Incomplete	Complete
$\left[\mathcal{F}_{\Sigma}\left\|\mathcal{F}_{(123)}\right\| \mathcal{F}_{\Sigma}\right]$	None	None	Complete
$\left[\mathcal{F}_{\Sigma} \mid \mathcal{F}_{(123)}\right)$	None	None	Complete
$S^{1} \times \mathcal{F}_{(123)}$	None	None	Complete
$\mathbb{R} \times \mathcal{F}_{(123)}$	No G_{2}-structure		
$\mathbb{R} \times \mathcal{F}_{(123)}$	ncomplete	Incomplete	Complete

$$
N_{\mathrm{Sp}(2)}(\mathrm{U}(1) \mathrm{Sp}(1))=\mathrm{U}(1) \operatorname{Sp}(1) \bigcup D_{2} \mathrm{U}(1) \operatorname{Sp}(1)
$$

where

$$
D_{2}=\left(\begin{array}{ll}
\mathrm{j} & 0 \\
0 & 1
\end{array}\right)
$$

Therefore, we have two possible spaces $\mathbb{R} \times_{h} \mathbb{C} P(3)$ with base a circle, and two possible special orbit types:

$$
S^{4}=\mathbb{H} P(1)=\frac{\mathrm{Sp}(2)}{\operatorname{Sp}(1) \times \operatorname{Sp}(1)}, \quad \mathcal{C}=\frac{\mathbb{C} P(3)}{\mathbb{Z}_{2}}=\frac{\mathrm{Sp}(2)}{N_{\mathrm{Sp}(2)}(\mathrm{U}(1) \mathrm{Sp}(1))}
$$

Let us now consider the action of D_{2} on the invariant tensors of $\mathbb{C} P(3)$:

$$
D_{2}^{*}\left(g_{1}, g_{2}, \omega_{1}, \omega_{2}, \alpha, \beta\right)=\left(g_{1}, g_{2},-\omega_{1},-\omega_{2}, \alpha,-\beta\right)
$$

This means that the boundary conditions are precisely those for $\mathrm{SU}(3)$-symmetry with $f_{2} \equiv$ f_{3}. In particular, the compact, complete solutions to the cosymplectic equations found for $\mathrm{SU}(3)$-symmetry also give solutions for $\mathrm{Sp}(2)$-symmetry. The results of the analysis in this case may be found in Table 3. Note that the existence of an invariant G_{2}-structure implies that the only possible principal orbit is $\mathbb{C} P(3)$.

Let us now turn to the weak holonomy equations, firstly for $\mathrm{SU}(3)$. Eqs. (5.6c) and (6.1) imply that $f_{1}^{2}=f_{2}^{2}=f_{3}^{2}$ and that $f_{i}=-\varepsilon_{j k} 2 \lambda^{-1} \sin \theta$. Eqs. (5.6a) and (5.6b) are now

$$
\left(\theta^{\prime}+4 \lambda\right) \sin ^{2} \theta\left(4 \cos ^{2} \theta-1\right)=0, \quad\left(\theta^{\prime}+4 \lambda\right) \sin ^{3} \theta \cos \theta=0
$$

As f_{i} is non-zero on the principal orbits, we get that $\theta^{\prime}=-4 \lambda$. We deduce that we have the same behaviour for $\mathrm{Sp}(2)$-symmetry.

Table 3
G_{2} solutions with symmetry $\operatorname{Sp}(2)$. Here \mathcal{C} denotes $\mathbb{C} P(3) / \mathbb{Z}_{2}$

M^{7}	Holonomy and symplectic	Weak holonomy	Cosymplectic
$\left[S^{4}\|\mathbb{C} P(3)\| S^{4}\right]$	None	None	Complete
$\left[S^{4}\|\mathbb{C} P(3)\| \mathcal{C}\right]$	None	None	Complete
$[\mathcal{C}\|\mathbb{C} P(3)\| \mathcal{C}]$	None	None	Complete
$S^{1} \times \mathbb{C} P(3)$	None	None	Complete
$\mathbb{R} \times D_{2} \mathbb{C} P(3)$	No G_{2}-structure		
$\left[S^{4} \mid \mathbb{C} P(3)\right)$	Complete	None	Complete
$[\mathcal{C} \mid \mathbb{C} P(3))$	None	None	Complete
$\mathbb{R} \times \mathbb{C} P(3)$	Incomplete	Incomplete	Complete

Theorem 9.2. Up to scale, the spaces $(0, \pi / 2) \times G / K$, with $G / K=F_{1,2}, \mathcal{F}_{(123)}$ or $\mathbb{C} P(2)$ admit unique structures with weak holonomy G_{2} invariant under the action of $\mathrm{SU}(3)$ or $\mathrm{Sp}(2)$. The metric and three-forms are

$$
g=4 \mathrm{~d} \theta^{2}+\sin ^{2} \theta g_{0}, \quad \phi=\sin ^{2} \theta\left(\omega_{0} \wedge \mathrm{~d} \theta+\sin \theta(\cos \theta \alpha+\sin \theta \beta)\right)
$$

where $g_{0}=\sum_{i} g_{i}$ and $\omega_{0}=\sum_{i} \omega_{i}$. These structures are incomplete and do not extend over any special orbits.

Next we discuss the holonomy solutions. The second equation in (5.5) implies that $\sin \theta \equiv$ 0 . Let $\varepsilon_{\theta}=\cos \theta$. Then the cosymplectic equations (5.4) show that the first equation in (5.5) is automatically satisfied. We thus have that f_{1} satisfies the differential equation

$$
f_{1}^{\prime}=\varepsilon_{\theta} \sqrt{\Xi\left(f_{1}, \mu, \nu\right)}
$$

where Ξ is defined in (6.5). As $\Xi\left(f_{1}, \mu, v\right) \geq 1 / 4$, we have that $\left|f_{1}\right| \geq(1 / 2) t+c$ and so any complete solution has exactly one special orbit and f_{1} vanishes on that orbit.

If $v=0$ then $f_{1}^{2}=f_{2}^{2}=f_{3}^{2}=(1 / 4) t$, which does not satisfy any of the boundary conditions for symmetry $\mathrm{SU}(3)$ or $\mathrm{Sp}(2)$.

We may now take $v>0$ and introduce the parameter change $r(t)^{2}=f_{1}^{2}(t) f_{3}(t)^{2}$, with $r(t)>0$. Then $\left|r^{\prime}\right|=\left|\left(f_{1} f_{3}\right)^{\prime}\right|=\left|f_{2}\right|$ is strictly positive. Using (5.4) and (6.1), we get

$$
\begin{aligned}
& f_{1}^{2}=r \sqrt{\frac{r^{2}-\mu^{2}}{r^{2}+v^{2}-\mu^{2}}}, \quad f_{2}^{2}=r^{-1} \sqrt{\left(r^{2}-\mu^{2}\right)\left(r^{2}+v^{2}-\mu^{2}\right)}, \\
& f_{3}^{3}=r \sqrt{\frac{r^{2}+v^{2}-\mu^{2}}{r^{2}-\mu^{2}}}
\end{aligned}
$$

and

$$
\mathrm{d} t^{2}=\frac{r \mathrm{~d} r^{2}}{\sqrt{\left(r^{2}-\mu^{2}\right)\left(r^{2}+v^{2}-\mu^{2}\right)}}
$$

These are 'triaxial' metrics with holonomy G_{2} and $\mathrm{SU}(3)$-symmetry. To be complete there must be a special orbit. This requires $f_{1}=0$ and $f_{2}, f_{3} \neq 0$ at $t=0$. The first condition
implies $r(0)^{2}=\mu^{2}$, the second gives $\mu=0$. Thus this solution has $f_{2}^{2}(t)=f_{3}^{2}(t)$, which is the metric found by Bryant and Salamon [7] on the bundle of anti-self-dual two-forms over $\mathbb{C} P(2)$. This solution also defines a structure with $\mathrm{Sp}(2)$-symmetry.

Theorem 9.3. The space $\mathbb{R} \times F_{1,2}$ admits a one-parameter family of holonomy G_{2} metrics with $\mathrm{SU}(3)$-symmetry. Only one metric extends to a complete metric, and the underlying manifold is $\left[\mathbb{C} P(2)_{1} \mid F_{1,2}\right)$, the bundle of anti-self-dual two-forms over $\mathbb{C} P(2)$.

The space $\mathbb{R} \times \mathcal{F}_{(123)}$ admits a unique incomplete metric with holonomy G_{2} invariant under $\mathrm{SU}(3)$.

The space $\mathbb{R} \times \mathbb{C} P(3)$ admits two metrics with holonomy G_{2}. One is incomplete, the other extends to a complete metric on $\left[S^{4} \mid \mathbb{C} P(3)\right.$), the bundle of anti-self-dual two-forms over S^{4}.

Remark 9.4. As Andrew Dancer pointed out to us the substitutions $\mathrm{d} t=f_{1} f_{2} f_{3} \mathrm{~d} s$ and $w_{i}=f_{j} f_{k}$ for each even permutation (ijk) of (123) reduce the $\mathrm{SU}(3)$-symmetric holonomy G_{2}-equations to Euler's equations for a spinning top. These equations may then be solved by elliptic integrals. However, as this is no longer an arc-length parameterisation, one now has to work harder to determine questions of completeness.

Finally, we consider Eq. (5.5) for a symplectic G_{2}-structure with symmetry $\mathrm{SU}(3)$. We have $\sin \theta=0$. Put $\varepsilon_{\theta}=\cos \theta$ and set

$$
h^{3}=f_{1} f_{2} f_{3}, \quad x=f_{2}^{-2} h^{2} \quad \text { and } \quad y=f_{3}^{-2} h^{2}
$$

so x and y are positive. Eq. (5.5) then give

$$
\begin{equation*}
6 \varepsilon_{\theta} h^{\prime}=x y+\frac{1}{x}+\frac{1}{y} \tag{9.2}
\end{equation*}
$$

On $(0, \infty)^{2}$, the right-hand side has a global minimum at $(1,1)$ and so $\left|h^{\prime}\right| \geq 1 / 2$. This implies that there are no periodic solutions and that any complete solution has exactly one special orbit. As $f_{2} f_{3}$ is even, we also see that f_{1} vanishes at the special orbit. Therefore, we have exactly the same topologies as for holonomy G_{2}. Note, however, that there are more solutions to the symplectic equations than for holonomy G_{2}. A particularly simple example of this is furnished by setting $f_{1}(t)=t, f_{2}^{2}(t)=1+$ $(t / 2)^{2}$ and $f_{2} \equiv f_{3}$. Complete triaxial solutions may be obtained as follows: begin with the complete $\mathrm{U}(3)$-symmetric metric with holonomy G_{2}; hold h fixed, make a smooth deformation of x on $[1, \infty)$ and determine the corresponding deformation of y by (9.2).

Proposition 9.5. Let M^{7} admit a G_{2}-structure which is preserved by a cohomogeneityone action of a compact simple Lie group. Then, M^{7} admits an invariant symplectic G_{2}-structure if and only if M^{7} admits an invariant metric with holonomy G_{2}. Similarly, complete symplectic G_{2}-structures only exist on manifolds with complete G_{2} holonomy metrics.

10. Smoothness of the three-form

In this section, we will briefly indicate how to check that the three-form ϕ is smooth once we have $h^{*} \phi_{t}=\phi_{-t}$ and smoothness of the metric g. The only case where significant work is required is that of special orbit $\mathbb{C} P(2)$ under $\mathrm{SU}(3)$-symmetry. The case of special orbit S^{4} under $\mathrm{Sp}(2)$-symmetry follows by similar arguments.

The manifold $\left[\mathbb{C} P(2) \mid F_{1,2}\right)$ is $\mathrm{SU}(3)$-equivariantly isomorphic to the bundle of anti-selfdual two-forms Λ_{-}^{2} over $\mathbb{C} P(2)$. Bryant and Salamon [7] showed how to construct holonomy G_{2} metrics on Λ_{-}^{2}, but they did not write down the general $\mathrm{SU}(3)$-invariant three-form because they treated all four manifolds at once. In the following, we specialise Bryant and Salamon's approach in the style of Swann [21].

If we write $\mathbb{C} P(2)=\mathrm{SU}(3) / \mathrm{U}(2)$, then $P=\mathrm{SU}(3)$ is a principal bundle of frames with structure group $U(2)=U(1) \times \mathbb{Z} / 2 \operatorname{Sp}(1)$. Under the action of $U(2)$, we have $\Lambda^{1,0} \cong$ $H L+\bar{L}^{2}$, where $L \cong \mathbb{C}$ and $H \cong \mathbb{C}^{2}$ are the standard representations of $\mathrm{U}(1)$ and $\operatorname{Sp}(1)$, respectively. This may be regarded as an identification not only of representations but also of bundles over $\mathbb{C} P(2)$, if to a representation V of $\mathrm{U}(2)$ we associate the bundle, also denoted V,

$$
P \times_{\mathrm{U}(2)} V,
$$

which is $P \times V$ modulo the action $(u, \xi) \mapsto\left(u \cdot g, g^{-1} \cdot \xi\right)$. We then have $\Lambda_{-}^{2}=S^{2} H \cong$ $\operatorname{Im} \mathbb{H}$. Let $\boldsymbol{\theta}=\theta_{0}+\theta_{1} \mathbf{i}+\theta_{2} \mathrm{j}+\theta_{3} \mathrm{k} \in \Omega^{1}(P, \mathbb{H})$ be the canonical one-form. Write $\eta=$ $\eta_{1} \mathrm{i}+\eta_{2} \mathrm{j}+\eta_{3} \mathrm{k} \in \Omega^{1}(P, \operatorname{Im} \mathbb{H})$ for the $\mathfrak{s p}(1)$-part of the $\mathrm{U}(2)$ Levi-Civita connection. As the Fubini-Study metric is self-dual and Einstein, one finds that

$$
\mathrm{d} \eta+\eta \wedge \eta=c \overline{\boldsymbol{\theta}} \wedge \boldsymbol{\theta}
$$

for some positive constant c (a positive constant multiple of the scalar curvature). If $x=$ $x_{1} \mathrm{i}+x_{2} \mathrm{j}+x_{3} \mathrm{k}$ is the coordinate on $\operatorname{Im} \mathbb{H}$ then let $r^{2}=x \bar{x}=-x^{2}$. The one-form

$$
\boldsymbol{\alpha}=\mathrm{d} x+\eta x-x \eta
$$

is semi-basic on $P \times S^{2} H$. One may now check that

$$
\begin{aligned}
& \omega_{1}=r^{-3} \boldsymbol{\alpha} x \boldsymbol{\alpha}, \quad \omega_{2}=4 c\left(r^{-1} \boldsymbol{\theta} x \overline{\boldsymbol{\theta}}+\overline{\boldsymbol{\theta}} \mathbf{i} \boldsymbol{\theta}\right), \quad \omega_{3}=4 c\left(r^{-1} \boldsymbol{\theta} x \overline{\boldsymbol{\theta}}-\overline{\boldsymbol{\theta}} \mathbf{i} \boldsymbol{\theta}\right), \\
& \alpha=-4 c\left(r^{-1} \boldsymbol{\theta} \alpha \overline{\boldsymbol{\theta}}+r^{-3} \boldsymbol{\theta} x \boldsymbol{\alpha} x \overline{\boldsymbol{\theta}}\right), \quad \beta=-4 c r^{-2} \boldsymbol{\theta}(\boldsymbol{\alpha} x-x \boldsymbol{\alpha}) \overline{\boldsymbol{\theta}}
\end{aligned}
$$

satisfy Eq. (5.1) and hence define the required invariant forms on Λ_{-}^{2}.
To determine whether a particular form ϕ given by (5.3) is smooth on Λ_{-}^{2}, consider the pull-back of ϕ to $P \times S^{2} H$. There smoothness reduces to a question of smooth forms on $S^{2} H=\mathbb{R}^{3}$. Writing these forms in terms of $\mathrm{d} x_{1}, \mathrm{~d} x_{2}$ and $\mathrm{d} x_{3}$ one now applies the results of Glaeser [12], see also [18], to determine the conditions for the coefficients to be smooth. Once g is smooth and $h^{*} \phi_{t}=\phi_{-t}$ one finds that there are no extra conditions.

Acknowledgements

This paper is based on part of the Ph.D. Thesis [9] of the first named author written under the supervision of the second named author. We thank Andrew Dancer and Anna

Fino for useful comments and remarks. Both authors are members of the EDGE, Research Training Network HPRN-CT-2000-00101, supported by The European Human Potential Programme.

References

[1] L. Bérard Bergery, Sur de nouvelles variétés riemanniennes d'Einstein, Vol. 6, Publications de l'Institut É. Cartan, Nancy, 1982, pp. 1-60.
[2] A.L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Folge, Vol. 10, Springer, Berlin, 1987.
[3] A. Brandhuber, J. Gomis, S.S. Gubser, S. Gukov, Gauge theory at large N and new G_{2} holonomy metrics, June 2001. eprint arXiv:hep-th/0106034.
[4] G.E. Bredon, Introduction to compact transformation groups, Pure Appl. Math. 46 (1972).
[5] R.L. Bryant, Metrics with exceptional holonomy, Ann. Math. 126 (1987) 525-576.
[6] R.L. Bryant, Classical, exceptional, and exotic holonomies: a status report, Actes de la Table Ronde de Géométrie Différentielle, Luminy, 1992, Paris, Sémin. Congr., Vol. 1, Soc. Math. France, 1996, pp. 93-165.
[7] R.L. Bryant, S.M. Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989) 829-850.
[8] F.M. Cabrera, M.D. Monar, A.F. Swann, Classification of G_{2}-structures, J. London Math. Soc. 53 (1996) 407-416.
[9] R. Cleyton, G-structures and Einstein metrics, Ph.D. Thesis, University of Southern Denmark, Odense, 2001. ftp://ftp.imada.sdu.dk/pub/phd/2001/24.PS.gz.
[10] M. Cvetič, G.W. Gibbons, H. Lü, C.N. Pope, New cohomogeneity-one metrics with Spin(7) holonomy, May 2001. eprint arXiv:math.DG/0105119.
[11] Th. Friedrich, I. Kath, A. Moroianu, U. Semmelmann, On nearly parallel G_{2}-structures, J. Geom. Phys. 23 (3-4) (1997) 259-286.
[12] G. Glaeser, Fonctions composées différentiables, Ann. Math. 77 (2) (1963) 193-209.
[13] A. Gray, Weak holonomy groups, Math. Z. 123 (1971) 290-300.
[14] N.J. Hitchin, Stable forms and special metrics, in: M.A. Fernández, J.A. Wolf (Eds.), Global Differential Geometry: The Mathematical Legacy of Alfred Gray, Am. Math. Soc., Providence, RI, 2001.
[15] D. Joyce, Compact Riemannian 7-manifolds with holonomy G_{2}. I, J. Diff. Geom. 43 (1996) 291-328.
[16] D. Joyce, Compact Riemannian 7-manifolds with holonomy G_{2}. II, J. Diff. Geom. 43 (1996) 329-375.
[17] D. Joyce, Compact Manifolds with Special Holonomy, Oxford Mathematical Monographs, Oxford University Press, 2000.
[18] J.L. Kazdan, F.W. Warner, Curvature functions for open 2-manifolds, Ann. Math. 99 (2) (1974) 203-219.
[19] A. Kovalev, Twisted connected sums and special Riemannian holonomy, Preprint MS-00-011, University of Edinburgh, December 2000. eprint arXiv:math.DG/0012189.
[20] P.S. Mostert, On a compact Lie group acting on a manifold, Ann. Math. 65 (1957) 447-455; P.S. Mostert, On a compact Lie group acting on a manifold, Ann. Math. 66 (1957) 589.
[21] A.F. Swann, Hyper-Kähler and quaternionic Kähler geometry, Math. Ann. 289 (1991) 421-450.

[^0]: * Corresponding author.

 E-mail addresses: cleyton@imada.sdu.dk (R. Cleyton), swann@imada.sdu.dk (A. Swann).

